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ABSTRACT

In this dissertation, we investigate and address two kinds of data integrity threats. We first

study the limitations of secure cryptographic shuffling algorithms regarding preservation

of data dependencies. We then study the limitations of machine learning models regarding

concept drift detection. We propose solutions to address these threats.

Shuffling Algorithms have been used to protect the confidentiality of sensitive data.

However, these algorithms may not preserve data dependencies, such as functional de-

pendencies and data-driven associations. We present two solutions for addressing these

shortcomings: (1) Functional dependencies preserving shuffle, and (2) Data-driven asso-

ciations preserving shuffle. For preserving functional dependencies, we propose a method

using Boyce-Codd Normal Form (BCNF) decomposition. Instead of shuffling the original

relation, we recommend to shuffle each BCNF decomposition. The final shuffled rela-

tion is constructed by joining the shuffled decompositions. We show that our approach is

lossless and preserves functional dependencies if the BCNF decomposition is dependency

preserving. For preserving data-driven associations, we generate the transitive closure of

the sets of attributes that are associated. Attributes of each set are bundled together during

shuffling.

Concept drift is a significant challenge that greatly influences the accuracy and relia-

bility of machine learning models. There is, therefore, a need to detect concept drift in

order to ensure the validity of learned models. We study the issue of concept drift in the

context of discrete Bayesian networks. We propose a probabilistic graphical model frame-

work to explicitly detect the presence of concept drift using latent variables. We employ

latent variables to model real concept drift and uncertainty drift over time. For modeling
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real concept drift, we propose to monitor the mean of the distribution of the latent variable

over time. For modeling uncertainty drift, we suggest to monitor the change in belief of

the latent variable over time, i.e., we monitor the maximum value that the probability den-

sity function of the distribution takes over time. We also propose a probabilistic graphical

model framework that is based on using latent variables to provide an explanation of the

detected posterior probability drift across time.

Our results show that neither cryptographic shuffling algorithms nor machine learning

models are robust against data integrity threats. However, our proposed approaches are

capable of detecting and mitigating such threats.
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CHAPTER 1

INTRODUCTION

In this dissertation, we investigate data integrity threats. For this we first study the limita-

tions of secure cryptographic shuffling algorithms regarding data dependency preservation

in relational databases. We then study at the vulnerabilities of machine learning algorithms

regarding concept drift detection.

1.1 DATA DEPENDENCIES PRESERVING SHUFFLE

Data breaches have become part of the modern landscape. The combined growth of the

internet and data processing capabilities has resulted in a data explosion that has amplified

the need for privacy protections [9]. Given the interconnected, technological nature of

the world communications, data breaches triggered a growing need to protect peoples’

sensitive information. No individual, organization, or government is immune from cyber

attacks [9]. For instance, the 2005 MasterCard breach left over 40 million cardholders

exposed to potential abuse, while 2006 led to the theft of critical personal data, including

names, dates of birth and social security numbers for over 26 million U.S. veterans [71].

Access control, intrusion detection, and data use policies can be crafted to deter and prevent

thefts and intrusion. However, current technologies are still vulnerable to intrusion and

unauthorized access threats [71].

Database shuffling has long been used as a means of protecting sensitive data [1, 6, 18,

37, 59]. When a malicious user gains access to a database (such as attacks in [8, 20, 38,

44]), shuffling may serve to reduce the possibility of full tuple exposure. We seek a means

of ensuring that shuffling algorithms are not easily detected by malicious users by ensuring

1
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that data values appear plausible and consistent. In this work, we address the preservation

of Functional Dependencies (FDs) and data-driven dependencies [16, 27].

We demonstrate our approach using the secure cryptographic shuffling algorithm [26].

The aim of the secure cryptographic shuffling algorithm is to diffuse the relationship be-

tween data entries in a database and the relationship between the fields of individual data

entries. The objectives are to prevent the attacker from obtaining the entire database when

the database storage server is compromised. Our solution is compatible with the current

relational database design and could be used to provide an additional layer of protection

over encryption.

The basic idea of the secure cryptographic shuffling algorithm is illustrated in Table 1.1

and 1.2.

Table 1.1: The original relation before using the secure cryptographic shuffling algorithm

SSN EmpName Rank Salary Gender
222-22-2222 James Secretary 65,000 Male
333-33-3333 Alex Chair 85,000 Male
444-44-4444 Sarah Professor 75,000 Female
555-55-5555 Kevin Secretary 65,000 Male
666-66-6666 Mark Professor 75,000 Male

Table 1.2: The relation after using the secure cryptographic shuffling algorithm

SSN EmpName Rank Salary Gender
333-33-3333 Kevin Professor 75,000 Female
555-55-5555 James Chair 65,000 Male
666-66-6666 Sarah Secretary 85,000 Male
222-22-2222 Mark Secretary 75,000 Male
444-44-4444 Alex Professor 65,000 Male

Consider the relation in Table 1.1 with the following FDs:

1. SSN → EmpName,Rank, Salary,Gender

2
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Table 1.3: The relation after using our proposed approach with secure cryptographic shuf-
fling algorithm

SSN EmpName Rank Salary Gender
555-55-5555 Sarah Chair 65,000 Female
666-66-6666 Kevin Professor 85,000 Male
222-22-2222 Mark Secretary 75,000 Male
333-33-3333 James Professor 85,000 Male
444-44-4444 Alex Secretary 75,000 Male

2. Rank → Salary

There is also a commonly known association between attributes names and gender. Shuf-

fling algorithms generally do not preserve data-driven dependencies or functional depen-

dencies. Note that, in Table 1.2 Sarah’s gender is “male" and Kevin’s is “female"; thus,

violating commonly known association between names and genders. Note also that Ta-

ble 1.2 violates the set of FDs.

There is a need to preserve data dependencies while using shuffling algorithms to en-

sure that an attacker would consider the shuffled relation to be a valuable source of data.

Using our proposed approach will preserve data dependencies are preserved as shown in

Table 1.3.

To generate Table 1.3, we first bundle attributesEmpName andGender together. This

ensures that the shuffling will not result in obviously incorrect association such as the 1st

and 3rd tuples of Table 1.2. Next, we decompose the relation into two relations:

1. R1 (Rank, Salary)

2. R2 ( SSN , Rank, [EmpName,Gender])

BothR1 andR2 are in BCNF form. We individually shuffleR1 andR2, then use the natural

join to create the shuffled relation in Table 1.3.

In this dissertation, we will provide solutions to address the problems of violations of

FDs and data-driven inference attacks by shuffling algorithms.

3
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Remarks. We assume that malicious attackers have full knowledge of the metadata of

the database. That is, we assume that malicious attackers know the set of functional depen-

dencies and the set of data-driven dependencies. In cybersecurity, it is a common practice

to assume that malicious users know the metadata [55]. Functional dependencies represent

real world restrictions. Their violation would result in database inconsistencies. Moreover,

data-driven dependencies are frequently publicly known. Therefore, any violation of these

dependencies will alert the attackers about the altered state of the database.

We consider database dependencies as fundamental part of databases, therefore crucial

to preserve. We recommend that our algorithms are deployed in the following order:

(1) First, all functional dependencies must be preserved.

(2) Second, public knowledge data-driven dependencies must be preserved.

(3) Third, domain-specific data-driven dependencies must be preserved.

1.1.1 OUR APPROACH

Common or publicly known associations among attributes may reveal that a relation has

been altered. Therefore, we are interested in modeling associations among database at-

tributes to improve the robustness of secure cryptographic shuffling algorithms.

In this dissertation, we study two types of associations:

(1) functional dependencies, and

(2) data-driven associations among attributes.

We show that shuffling algorithms do not preserve FDs and data-driven associations. Our

approach can be used with secure cryptographic shuffling algorithms to preserve FDs and

data-driven dependencies.

For our approach, we show how to use functional dependencies, to identify attributes

that must be shuffled together. We use statistical methods, such χ2, Pearson Correlation

4
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Coefficient (PCC), and ANOVA tests, to model and extract data-driven association among

attributes. We use these associations to group attributes to be shuffled together. Thus,

limiting the risk of discovery of the shuffle.

The main contributions of our approaches in this section can be summarized as follows:

1. We define two approaches for addressing the shortcomings of shuffling algorithms:

FD-preserving shuffle and data-driven association-preserving shuffle.

2. We develop a solution to preserve the set of FDs while applying the secure crypto-

graphic shuffling algorithm.

3. We develop a method to preserve data-driven associations while applying shuffling

algorithms.

4. We provide proof sketches of the properties of our algorithms. That is, we show that

our algorithms preserve FDs and data-driven dependencies without requiring any

change of the shuffling algorithms.

Our analysis and empirical results show that our new approaches are feasible and promis-

ing.

1.2 CONCEPT DRIFT DETECTION

In recent years, machine learning models are increasingly used in many real-world appli-

cations. A common challenge for machine learning systems is to model environments in

which data evolves over time, a phenomenon that is commonly known as concept drift [24].

Detecting concept drift is crucial and active research in machine learning systems. Con-

cept drift influences the accuracy and reliability of machine learning models. Current ap-

proaches to detect concept drift use latent variables [12, 14]. Latent variables (a.k.a. un-

observed variables) are variables that are not immediately observed but instead they are

inferred from different variables that are observed and directly measured. An advantage of

5
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concept drift detection techniques that are based on using latent variables is that they tend

to estimate the desired effects on the machine learning models more reliably than tradi-

tional detection techniques. A large number of observable variables can be aggregated in a

model to represent an underlying concept, making it easier to understand the data and de-

tect concept drift over time. However, current efforts for detecting concept drift using latent

variables either limited to contentious Bayesian networks [12] or not directly applicable to

discrete Bayesian networks [14]. In addition, previous efforts for detecting concept drift

using latent variables [12, 14] are limited to naive Bayes classifiers and therefore cannot be

used to model concept drift that involves concepts span over multiple variables.

In this dissertation, we propose a technique for detecting concept drift in the context of

discrete Bayesian networks using latent variables. Our technique extends the Borchani et

al. [12] approach such that it is directly applicable to discrete Bayesian networks. Borchani

et al. represent concept drift using unobserved variables in continuous domains, namely

in conditional linear Gaussian models. In addition to modeling posterior probability dis-

tribution drift, we propose a new method for modeling uncertainty drift. Unlike previous

research that is solely limited to handling the presence of concept drift (we refer the reader

to Iwashita and Papa [30] for a recent survey), we propose a new framework that is based on

using the novel idea of latent variables to find an explanation of the occurring real concept

drift.

1.2.1 OUR APPROACH

We propose a modeling framework for detecting the presence of concept drift in the con-

text of discrete Bayesian networks using latent variables. Unlike previously proposed ap-

proaches [12, 14] which are limited to naive Bayes classifiers, our framework is applicable

to general Bayesian network models. We use latent variables to model two types of drifts

over time:

• Posterior Distribution Drift, and

6
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• Uncertainty Drift.

We develop a modeling technique using latent variables that is able to detect posterior dis-

tribution drift. We provide a new method for modeling and detecting concept drift via

modeling uncertainty over time, i.e., the amount of belief that changes over time. In addi-

tion, we propose an explanation framework that is able to use latent variables to not only

detect the presence of real concept drift but also provide an explanation of the occurring

drift.

We have implemented our approaches and presented our empirical results. Our results

indicate that using latent variables to develop a modeling technique to detect the existence

of concept drift and an explanation framework to find interpretations of the occurring drift

is an efficient mechanism. We show that our approaches are not only sensitive to changes

in both real concept drift and uncertainty drift but also can quickly detect and explain the

presence of drifts.

1.3 RESEARCH TASKS

The objective of this dissertation is to present our findings, which aim to address the fol-

lowing main research tasks:

1. Shuffling Algorithms Limitations Analysis - this research task studies the preserva-

tion of data dependencies while applying secure cryptographic shuffling algorithms.

That is, we investigate whether or not current secure cryptographic shuffling algo-

rithms preserve data dependencies in the shuffled relations. For this task, we have

completed the following subtasks:

1.1 Research publications.

1.2 Define the shortcomings of current secure cryptographic shuffling algorithms.

1.3 Functional dependencies preserving shuffle - this research subtask develops a

solution to preserve a given set of functional dependencies after applying se-

7
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cure cryptographic shuffling algorithms. For this research subtask, we have pre-

formed the following:

a) Investigation of up to 3NF relations.

b) BCNF-based FD Preserving Shuffle.

c) Generic functional dependencies preserving shuffle.

1.4 Restoring original relations - this research subtask investigates the process of

restoring the original relation from the shuffled relation. For this research sub-

task, we have preformed the following:

a) Develop an algorithm to restore shuffled BCNF relations.

b) Develop an algorithm to restore shuffled relations using the generic shuffling

algorithm.

1.5 Data-driven association preservation shuffle - this research subtask develops a

solution to preserve data-driven association in a given relation after applying

secure cryptographic shuffling algorithms. For this research subtask, we have

preformed the following:

a) Define an association graph.

b) Develop an algorithm for modeling and extraction of data-driven association

based shuffle.

• Completed: 1.1, 1.2, 1.3a, 1.3b, 1.3c, 1.4a, 1.4b, 1.5a, 1.5b.

• Remaining: None

• H. Alsuwat, E. Alsuwat, T. Geng, C. Huang, and C. Farkas, “Data dependencies

preserving shuffle in relational database”, 2019 2nd International Conference

on Data Intelligence and Security (ICDIS), June 2019, pp. 180 - 187. (citation

number [4] in the references)
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• T. Geng, H. Alsuwat, C-T. Huang, and C. Farkas, “Securing relational struc-

tured database with attribute association-aware shuffling”. Accepted in: The

2019 IEEE Conference on Dependable and Secure Computing.

2. Modeling Concept Drift: this task studies the issue of concept drift in the context

of discrete Bayesian networks. That is, we propose a probabilistic graphical model

framework to explicitly detect the presence of concept drift using latent variables.

For this research task, we have preformed the following subtasks:

2.1 Research publications.

2.2 Define the limitations of concept drift detection methods in Bayesian networks.

2.3 Define posterior probability drift.

2.4 Define uncertainty drift.

2.5 Propose a framework for detecting the presence of concept drift in the context

of discrete Bayesian networks using latent variables.

2.6 Use latent variables to model

a) Posterior probability drift, and

b) Uncertainty drift.

2.7 Generalization of our framework into higher dimensions.

2.8 Implement our approaches and present our empirical results.

• Completed: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6a, 2.6b, 2.7, 2.8.

• Remaining: None.

• H. Alsuwat, E. Alsuwat, M. Valtorta, J. Rose, and C. Farkas, “Modeling con-

cept drift in the context of discrete bayesian networks”, Proceedings of the 11th

International Joint Conference on Knowledge Discovery, Knowledge Engineer-

ing and Knowledge Management - Volume 1: KDIR, INSTICC, SciTePress,

2019, pp. 214 - 224. (citation number [5] in the references)
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3. Explaining Concept Drift: this task focuses on finding an explanation of concept drift

in the context of discrete Bayesian networks. That is, we propose a framework to help

find explanations of the occurring posterior probability drift using latent variables.

For this research task, we have preformed the following subtasks:

3.1 Research publications.

3.2 Propose a framework for explaining real concept drift - this research subtask

aims to build a framework that is capable to explain the detected posterior prob-

ability drift across time.

3.3 Propose a Kullback-Leibler (KL) divergence based measure - this research sub-

task aims to find an explanation for the occurring posterior probability drift

3.4 Develop an algorithm for finding an explanation of posterior probability drift

across time.

3.5 Implement our approaches and present our empirical results.

• Completed: 3.1, 3.2, 3.3, 3.4, 3.5.

• Remaining: None.

• H. Alsuwat, E. Alsuwat, M. Valtorta, J. Rose, and C. Farkas, “Concept Drift

in the Context of Discrete Bayesian Networks: A Modeling Technique and

an Explanation Framework”, To be submitted to the ACM Transactions on

Management Information Systems (TMIS).

1.4 DISSERTATION OUTLINE

The remaining of this dissertation is organized as follows:

– In chapter 2, we present an overview of background information.

– In chapter 3, we present our approach for addressing the problem of shuffling algorithms

and preserving functional dependencies.
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– In chapter 4, we demonstrate the process of restoring the original relations after applying

our secure cryptographic shuffling algorithm.

– In chapter 5, we present our approach for addressing the problem of shuffling algorithms

and data-driven association discovery.

– In chapter 6, we present our approaches for modeling concept drift in the context of

discrete Bayesian networks using latent variables.

– In chapter 7, we present our explanation framework for finding interpretations of the

occurring real concept drift using latent variables in discrete Bayesian networks.

– Finally, in chapter 8, we conclude and discuss the future directions of our work.

11
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we provide a brief overview of background information and related work

for this dissertation.

2.1 ASSOCIATION VIA STATISTICAL TESTING

Knowledge related to measuring associations between attributes in database systems is es-

sential for crafting solutions to challenges in information management. Various techniques

allow one to measure the strength of an association between random variables. Each of

these techniques is dependent upon data type.

When variables of interest are categorical, the chi-squared test (χ2 test, also known as

“Pearsons chi-squared test" or the “chi-square test of independence") [15, 21] is suitable for

discovering statistically-significant associations between two categorical attributes. Sim-

ply, this is a goodness of fit test in which the data are compared to a model based on the

null hypothesis of independence [13]. The χ2 test allows one to decide whether to accept

or reject the null hypothesis. If the difference between the observed and the expected val-

ues is less than or equal to 0.05, then the null hypothesis is rejected [10]. Conversely, if

the difference between the observed and the expected values is larger than 0.05, the null

hypothesis is accepted.

When variables of interest are quantitative, the correlation coefficient is suitable for

measuring the association between quantitative variables [13]. The Pearson correlation

coefficient (PCC), or “Pearson’s r," [54, 62] was the first formal method for measuring sta-

tistical correlation and remains one of the most widely used methods. The PCC is a linear
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test used to evaluate the association between two variables and returns a value between

1 and −1. When the returned value is close to 1 or −1, the correlation between the two

variables is strong. Otherwise, if the value is close to zero, the correlation is weak [36].

When variables of interest are one categorical and one quantitative, the analysis of

variance (ANOVA) test [45] is suitable for discovering the association between them [64].

One-way ANOVA test is one of the most powerful and widely used methods in statisti-

cal inference [42]. It is used to measure the association between an independent variable

(the categorical variable) and a dependent variable (the quantitative variable), which is

broken down by the states on the independent variable. ANOVA test then examines for

statistically-significant differences between the means of two or more populations of the

dependent variable [64]. ANOVA test allows one to either accept or reject the null hypoth-

esis. The null hypothesis is accepted if all means of samples of the dependent variable are

equal [42]. Conversely, the null hypothesis is rejected if there is at least one sample of the

population of the dependent variable which has a different mean value.

2.2 PRIVACY PRESERVING IN TRADITIONAL DATABASE

The problem of preserving privacy within the traditional database context has been exten-

sively studied in recent times. Numerous techniques have been proposed to support data

mining without compromising privacy, such as perturbation methods [66]. Perturbation

methods are data masking techniques that are widely used for privacy preservation [46].

Perturbation-based methods perturb or alter individual data values or query results by swap-

ping, condensation, adding noise, or shuffling [47, 66, 26]. Tradeoffs between information

loss and privacy preservation must be weighed in when choosing and implementing meth-

ods for securing databases.

Data swapping is a transformation technique that modifies the dataset by altering dataset

attribute values from selected records to reduce risk of identification or disclosure while

still preserving data integrity and utility [18]. Swapping is a pre-tabular method and thus

13



www.manaraa.com

appropriately applied to microdata; in this technique, the exchange of data values across

data records with specified proximity undermines intruder confidence that the identified

information is associated with the data target [70]. All original values are maintained in

the dataset as only value positions are swapped [31].

Condensation or aggregation approaches work by condensing data into various groups

of predetermined size to maintain a specified level of statistical information; the clusters

condensed statistics can be used to generate pseudo-data from each group, thereby resulting

in a synthetic data set is the same as the original from which it was created [31, 57]. Privacy

preservation is achieved by using pseudo-data, which adds an additional security layer

without necessitating redesign of existing data mining algorithms. However, information

loss occurs in condensation as large number of records is streamlined into a single statistical

cluster, thus also affecting data mining outcomes due to this observed information loss [57].

Similar to data swapping, adding noise is another value distortion approach wherein the

original data values are modified by adding some random number (noise) to create artifi-

cial data values, essentially masking the original data, thus reconstructing data distribution

without compromising the original values of the data [31, 57]. However, new algorithms

are required to effectively mine the data as needed.

In our previous work, we introduced a novel shuffling approach to enhance the security

of relational database [26]. We discussed the cases where an attack that is capable of recov-

ering the entire database with only the individual data files in the MySQL environment. It

is essentially a feature of the database management system, but malicious users can employ

it to get access to the data if they can break into the servers operating system. Then, we

proposed a cryptographic algorithm to shuffle the data values in each field of the database

table in order to assure privacy and reduce the risk of data compromise.

As to the shuffling algorithm, there are two steps: shuffling inside a block and shuffling

of the blocks. The behaviors depend on the following variables: l, w, k1, k2 where l is the

total number of tuples in the relational database, and w, k1, and k2 are three random num-
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bers generated according the specific algorithms. Indeed, w decides how many blocks the

entire column will be divided into, and w is essentially the number of tuples in each block

except for the last block. k1 determines the shuffling inside each block and k2 determines

the shuffling of blocks. Both shuffling of elements inside one block and shuffling of blocks

follow the rule that element at position [i] would be moved to a position based on mod w.

One significant issue about shuffling is that some attributes in the tuple are highly re-

lated to each other, and shuffling them separately will break their relationship. If such

highly associated attributes are shuffled individually and independently, the resulting mis-

matching attribute values in the same tuple can be easily detected by the attacker and ex-

pose the existence of shuffling. This arises the need for “bundle shuffling" in which a set

of highly associated attributes must be bound together by assigning the same key set to

them with the goal of preserving data association when using our cryptographic shuffling

algorithm. If we bundle the highly associated attributes and shuffle them together, then the

shuffled table becomes more deceptive for the attacker to consider it as a truly valuable

source of data.

One of the objective of this dissertation is to bridge the gap between shuffling algo-

rithms and data preservation dependencies, as current perturbation techniques fail in this

regard. Therefore, necessary privacy preservation performance can be optimized by en-

hancing shuffling algorithms so that they successfully preserve the data dependencies after

shuffling.

2.3 CONCEPT DRIFT

In this section, we will give a brief overview of concept drift, a definition of concept drift,

a concept drift classification, and concept drift detection methods.
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2.3.1 CONCEPT DRIFT OVERVIEW

Applications are increasingly critically dependent on concept schemes for the semantic in-

teroperability of their data [65]. As data evolves over time, real-time data analytics are

undermined as the models built to foster this learning becomes obsolete [73]. In machine

learning, concept drift is a nonstationary learning problem that develops over time, often

because the training data and application data mismatch in real life scenarios [43, 24].

Therefore, concept drift is associated with a greater probability for prediction inaccuracies

due to misalignment driven by changes in the statistical properties of the target variable.

Most real-world applications confront some form and degree of shift, which renders this

topic highly relevant to the existing and emerging machine learning community [43]. Con-

cept drift thus plays a key role in machine learning and predictive analytics optimization,

as adequately accounting for this phenomenon strengthens the overall integrity, utility, and

functionality of the machine learning model. Recent surveys on concept drift can be found

in [30, 24]. In this dissertation, we address two types of concept drift as follows:

1. Posterior Probability Drift, and

2. Uncertainty Drift.

POSTERIOR PROBABILITY DRIFT

We take the Bayesian view that we model each parameter in a Bayesian network as a ran-

dom variable, beta distributed, and we use the mean of that random variable for inference.

Posterior Probability drift refers to changes in the mean of the posterior distribution from

time point ti to time point tj , where i, j ≥ 0 and j > i. Posterior distribution drift is caused

by either change in the prior or the likelihood function or both as the posterior distribution

is proportional to the product of the prior and the likelihood function (Posterior ∝ Prior ×

Likelihood function [39]).

Pti
(A | B) ̸= Ptj

(A | B) (2.1)
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where P (A | B) is the conditional probability of A given B.

In the case of discrete Bayesian networks, Equation 2.1 can be written as follows:

( y + α

n+ α + β
)ti

̸= ( y + α

n+ α + β
)tj

(2.2)

which means that the mean of the beta distribution at time point ti is not equal to the mean

of the beta distribution at time point tj .

Example 2.1. In the chest clinic network, assume that there are two datasets DB1 and

DB2. We use DB1 and DB2 to learn the structure of the Bayesian networks B1 and B2

respectively. Figure 2.1 illustrates a graphical representation of the posterior distribution

drift for the posterior assignment P (T = yes | A = yes).

Figure 2.1a shows a posterior probability distribution value ( y+α
n+α+β

) of the assignment

P (T = yes | A = yes) in model B1 whereas Figure 2.1b shows the drifted posterior

probability distribution value of the same assignment in model B2. Figure 2.1b shows a

case of posterior distribution drift since there is a PB2 in the model, B2, that has a different

value: PB2(T = yes | A = yes) than the PB1 value of the original validated model B1:

PB1(T = yes | A = yes).

UNCERTAINTY DRIFT

Entropy measures the amount of uncertainty in an input dataset [61]. In machine learning

systems, when learning the structure of models, B1 and B2, from datasets DB1 and DB2

respectively, there is an expected drift in the beliefs between the two models Bvalid and

Bnew. However, this drift should not be substantial. There is, therefore, a need to define

uncertainty drift in this context.

Uncertainty drift is a variable that reflects the change in beliefs over time. This change

happens when the probability density function changes from the model B1 at time point

t = i to the model B2 at time point t = i+ 1. This kind of change is mainly caused by the

change in the total number of observed cases between datasets DB1 and the new dataset
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(a) The posterior probability in B1 is the intersection of the vertical
dotted line with the X axis.

(b) The posterior probability in B2 is the intersection of the vertical
dotted line with the X axis.

Figure 2.1: A graphical representation to illustrate Posterior Distribution Drift
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DB2. Note that, in the case of nonstationary environments the dataset DB2 is the union of

the dataset DB1 and a new incoming dataset, which we denote as DBnew

PdfB1(P (A | B)) ̸= PdfB1(P (A | B)) (2.3)

where P (A | B) is the posterior probability.

In the case of discrete Bayesian networks, having a prior that is conjugate for the likeli-

hood function will make it mathematically convenient to calculate the posterior distribution

since the posterior distribution will be from the same family of distribution as the prior [56].

For instance, multiplying a beta distributed prior, Beta(α, β), with a binomial dis-

tributed likelihood function, Binomial(n, θ), yields a beta distributed posterior distribu-

tion, Beta(y + α, n − y + β), where n is the total number of cases, and y is the count of

successes [3]. Thus, we can write Equation 2.3 as follows:

PdfB1( y + α

n+ α + β
) ̸= PdfB2( y + α

n+ α + β
). (2.4)

where y+α
n+α+β

is the mean of the beta distribution.

Example 2.2. In the chest clinic network[35], a graphical representation of the uncertainty

drift for the posterior assignment P (T = yes | A = yes) is illustrated in Figure 2.2.

Assume that there are two datasets DB1 and DB2 that are used to learn the structure of the

belief networks B1 and B2 respectively.

Figure 2.2a shows a Pdf of the assignment P (T = yes | A = yes) in model B1

whereas Figure 2.2b shows the drifted Pdf of the same assignment in model B2. Fig-

ure 2.2b shows a case of uncertainty drift since there is a Pdf in the model, Bnew, that has

a different value: pdfB2(P (T = yes | A = yes)) than the Pdf value of the original model

B1: pdfB1(P (T = yes | A = yes)).

2.3.2 DEFINITION OF CONCEPT DRIFT

In the real-world, change is constant. The assumption that both training and testing data

follow the same distributions is typically violated in real-world applications because testing
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(a) The vertical dotted line represents the amount of uncertainty in
Bvalid.

(b) The vertical dotted line represents the amount of uncertainty in
Bnew.

Figure 2.2: A graphical representation to illustrate Uncertainty Drift
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(unseen) data commonly experience a phenomenon that results in a change to the distri-

bution of a single feature, a combination of features, or class boundaries [43]. Traditional

machine learning algorithms make predictions of future data by leveraging trained statis-

tical models constructed using previously collected labeled/unlabeled training data [52].

Machine learning strategies generally employ static models that use historical data [68].

In practical application, data, context, concepts, and relationships can change, leading to

concept drift, which can erode predictive performance as these models assume a static

relationship between input and output variables [43, 65].

Concept drift “is the situation in which the statistical properties of the target concept

change over time" [65]. In machine learning, concept drift specifically refers to unexpected

changes to underlying data distribution over time within the unknown and hidden relation-

ship between input and output variables [73, 25]. There are two primary kinds of concept

drift: (1) sudden (abrupt, instantaneous), and (2) gradual [63]. Recurring or cyclical change

can also occur [72].

To understand concept drift, it is also necessary to define a concept. According to [65],

“a concept refers to different objects at different points in time". Concept intention, ex-

tension, and labeling can all change or shift over time, which influences the meaning of

the target concept (concept drift). Concept shift is the hardest challenge among different

types of dataset shifts, as there are multiple factors that can contribute to this, including

(1) a changing context that triggers changes in target concepts, (2) changes in user be-

haviors and/or tasks, (3) changes to class definitions, (4) changes between training and

test phases [43, 52]. Furthermore, the target concept may depend on some hidden con-

text, which makes it difficult to explicitly integrated in the form of predictive features (i.e.,

weather prediction and seasonal changes; customer buying preferences shift according to

time of day/season, income/inflation levels; etc.) [69]. Changes occurring within this hid-

den context can lead to more or less radical shifts in the target concept. It can be difficult

to differentiate between true concept drift and noise, as algorithm robustness affects noise
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responsivity [69].

Simply stated, concept drift occurs when a concept has different meanings at different

times; the greater the gap between these two meanings, the more unstable the concept

becomes [65]. Concept drift occurs when the target concept is so unstable that part or all

of its meaning is better represented by a different concept.

In contemporary scientific literature, concept drift may also be referred to as concept

shift, dataset shift, data fracture, covariate shift, and other terms common throughout the

literature [43]. The lack of a standardized term complicates scientific inquiry and synthesis,

as there are important differences in these related terminologies. In differentiating between

dataset shift types and definitions, concept drift occurs when different data distributions are

associated with changes in class definitions or the target “concept” to be learned [43].

2.3.3 CONCEPT DRIFT CLASSIFICATION

In contemporary scientific literature, several researchers have proposed to characterize

types of concept drift [67, 24, 30]. Webb et al. [67] categorized types of concept drift

based on (i) Drift subject, which indicates what aspects of the joint probability drifts over

a period of time, (ii) Drift frequency, which shows how often concept drift happens during

a particular time, (iii) Drift transition, which indicates the means wherein the process of

changing from one concept to another occurs, (iv) Drift reoccurrence, which shows whether

or not the occurring concept drift has previously appeared, and (v) Drift magnitude, which

points out the degree of drift between two time points.

Drift subject is mathematically defined as a change in the joint probability between

two time points t0 and t1 as follows: Pt0(X, y) ̸= Pt1(X, y), where X is the input vari-

ables and y is the target variable [24]. Drift subject is divided into two types [24]: (1) real

concept drift, and (2) virtual concept drift. Real concept drift occurs when the condi-

tional probability changes on the target variable y whereas the input variables X remain

unchanged, i.e., the posterior probability changes between two time points t0 and t1 as
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follows: Pt0(y | X) ̸= Pt1(y | X). Virtual concept drift occurs when the prior distri-

bution changes between two time points t0 and t1 while the posterior probability remains

unchanged [63, 69], i.e., Pt0(X) ̸= Pt1(X). Real concept drift is the most important aspect

in the category of drift subject since changes in real concept drift will degrade the accuracy

of the machine learning model and thus require an update of the model [32]. Therefore, the

discussion of this dissertation is mainly related to the notion of real concept drift which we

refer to as concept drift.

2.3.4 CONCEPT DRIFT DETECTION

One of the challenging tasks in the context of concept drift is to rapidly detect concept

drift and provide a practical measure of drift magnitude. A variety of concept drift detec-

tion methods have been recently developed. Gama et al. [24] categorized such methods

into four general groups as follows: (1) methods based on sequential analysis (members

of this group include the Cumulative Sum (CUSUM) and the Page-Hinkley (PH) [51]),

(2) methods based on statistical process control (members of this group include the Drift

Detection Method (DDM) [23], the Early Drift Detection Method (EDDM) [7], and the

Exponentially Weighted Moving Average (EWMA) [58]), (3) methods based on contex-

tual approaches (a member of this group includes the Splice system [28]), and (4) methods

based on Monitoring distributions on two different time-windows (members of this group

include the Adaptive sliding Window (ADWIN) [11], the Adaptive Cumulative Windows

Model (ACWM) [60], and SEED Drift Detector (SEED) [29]).

The contribution of this work belongs to the last one of the four groups. Methods

based on monitoring distributions on two different time-windows are techniques that use

statistical tests to compare the distributions of a fixed reference window on the previous

data and a sliding window on the most recent data [24]. Kifer et al. were first to propose

comparing two detection window distributions in relation to data streams [33]. The team’s

presented algorithms assessed samples taken from two probability distributions to identify
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key differences in the distributions. Another example of such methods, proposed in [22], is

the VFDTc system, which is an algorithm for mining in nonstationary environments with

the ability to detect and adapt to concept drift. The VFDTc system is used in concept

drift resolution through ongoing monitoring of observed differences between two class-

distributions, including evaluation of: 1) class-distribution when a node was a leaf, and

2) weighted sum of class-distributions in the nodes leaf-descendants [22].

Other more recent concept drift detection methods based on monitoring distributions

on two different time-windows were proposed in [12] and [14].

In this dissertation, we study concept drift detection via comparing distributions on two

different time-windows. We aim to use latent variables to model and detect concept drift

in the context of discrete Bayesian networks. Borchani et al. proposed a modeling tech-

nique with conditional linear Gaussian (CLG) that used latent variables to detect concept

drift [12]. Their model is applicable to continuous Bayesian networks and was applied

to continuous domains. Cabanas et al. proposed a method for detecting concept drift in

discrete streaming data [14]. Their proposed preprocessing algorithm transferred discrete

data into continuous data before applying Borchani at el. model to detect concept drift.

However, Cabanas et al.’s technique is susceptible to data loss and results in increased

processing overhead when used in incremental learning domains.
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CHAPTER 3

SHUFFLING ALGORITHMS AND PRESERVATION OF

FUNCTIONAL DEPENDENCIES

In this chapter, we investigate the problem of preserving the set of functional dependencies

of normalized relations after applying our secure cryptographic shuffling algorithm. Our

goal is to guarantee that if a relation instance, r, satisfies set F of functional dependencies,

then the shuffled relation instance r′ also satisfies F .

Definition 3.1. Let R(A1, ..., An) represent a relation schema, where R is the name of the

relation and A1, ..., An is the set of attribute names. An instance relation of R is denoted

as r.

3.1 INVESTIGATION OF UP TO 3NF RELATIONS

Let r be a relation in 3NF with respect to a set F of functional dependencies. Shuffling r

using our secure cryptographic shuffling algorithm results in a new relation r′ , such that r′

may not satisfy F .

As illustrated in section 3.2.3, we observe that relations in the third normal form may

not satisfy the set of functional dependencies after applying secure cryptographic shuffling

algorithms. Note that the results of using our secure cryptographic shuffling algorithm on

1NF and 2NF relations would follow with similar results. Thus, applying our secure cryp-

tographic shuffling algorithm on relations up to 3NF may pose a security risk as attackers

may be able to discover that the relations are shuffled.
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To preserve the set of functional dependencies of a 3NF relation, we need to define the

set of attributes for “bundle shuffling." That is, we need to define the set of attributes that

must be bound together when using our shuffling algorithm and thereby assign the same

key set to these attributes. As a result of bundle shuffling, we guarantee that the resulted

shuffled relation r′ does not violate the set of functional dependencies.

Theorem 3.2. Given a relation r with schema R(A1, . . . , An) in 3NF and set F = {F1,

. . . , Fk} of functional dependencies satisfied by r. We say that the set F will be satisfied by

r
′
, where r

′
is the relation after shuffling, if we shuffle together all attributes {Ai}+, where

{Ai}+ is the closure of attributes Ai under the set F .

Proof Sketch. The proof is trivial because for any two tuples t1 and t2 in r, if t1[Ai] =

t2[Ai], then F = {Ai → Aj} requires that t1[Aj] = t2[Aj]. But because we bundle Ai

and Aj together while applying our secure cryptographic shuffling algorithm, then it must

always be satisfied for the shuffled relation if it was satisfied for the original relation.

Bundling attributes together will reduce the confusion we can introduce in our system.

In the next section, we investigate options that will reduce the need for attribute bundling.

3.2 EXPERIMENTAL RESULTS OF INVESTIGATION OF UP TO 3NF RELATIONS

In this section, we present our experimental results of applying our secure cryptographic

shuffling algorithm to 1NF, 2NF, and 3NF relations. We illustrate how the experiments

carried out by our secure cryptographic shuffling algorithm preserve or violate the set of

functional dependencies. Our experimental results is shown as follows:

3.2.1 INVESTIGATION OF 1NF RELATIONS

Let R be a Student relation in the 1NF as shown in Table 3.1 with the following set of

functional dependencies:

1. {StdID, CourseNumber } → StdName,
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2. {StdID, CourseNumber } → CourseName,

3. CourseNumber → CourseName, and

4. StdID → StdName

We test whether or not shuffling R using our secure cryptographic shuffling algorithm will

preserve the set of functional dependencies.

Table 3.1: Student Relation.

StdID CourseNumber StdName CourseName
1111 CSCE551 James Math
2222 CSCE522 David Database
3333 CSCE123 Thomas Physics
1111 CSCE522 James Database

Table 3.2: Student Relation after using secure cryptographic shuffling algorithm.

StdID CourseNumber StdName CourseName
1111 CSCE551 David Database
2222 CSCE522 James Math
3333 CSCE123 James Database
1111 CSCE522 Thomas Physics

Table 3.2 is the result of using our secure cryptographic shuffling algorithm on the student

relation in Table 3.1. We observe that the set of functional dependencies are not preserved

after applying our secure cryptographic shuffling algorithm as shown in Table 3.2. There-

fore, we have presented a counter example to show that relations in the 1NF does not

preserve the set of functional dependencies after using our secure cryptographic shuffling

algorithm.

3.2.2 INVESTIGATION OF 2NF RELATIONS

Let R be an Employee relation in the second normal form as show in Table 3.3, with the

following set of functional dependencies:
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1. SSN → EmpName,

2. SSN → Rank,

3. SSN → Gender,

4. SSN → Salary, and

5. Rank → Salary.

We test whether or not shuffling R using our secure cryptographic shuffling algorithm will

preserve the set of functional dependencies.

Table 3.3: The original relation before secure cryptographic shuffling.

SSN EmpName Rank Salary Gender
222-22-2222 James Secretary 35,000 Male
333-33-3333 Alex Chair 150,000 Male
444-44-4444 Sarah Professor 130,000 Female
555-55-5555 Kevin Secretary 35,000 Male
666-66-6666 Mark Professor 130,000 Male

Table 3.4: The relation after secure cryptographic shuffling.

SSN EmpName Rank Salary Gender
333-33-3333 Kevin Professor 130,000 Female
555-55-5555 James Chair 35,000 Male
666-66-6666 Sarah Secretary 150,000 Male
222-22-2222 Mark Secretary 130,000 Male
444-44-4444 Alex Professor 35,000 Male

Table 3.4 is the result of using our secure cryptographic shuffling algorithm on the

student relation in Table 3.3. We observe that the functional dependencies are not pre-

served after applying our secure cryptographic shuffling algorithm as shown in Table 3.4.

Therefore, we have presented a counter example to show that relations in the 2NF does not

preserve the set of functional dependencies after using our secure cryptographic shuffling

algorithm.
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3.2.3 INVESTIGATION OF 3NF RELATIONS

The Student Enrollment relation, r1, is shown in Table 3.5. The relation has three attributes:

Student ID (StdID), Subject (course info), and Professor, teaching the course. The relation

r1 is in 3NF with respect to the following set of functional dependencies:

F1: {StdID, Subject} → Professor

F2: Professor → Subject

Table 3.5: Original Student Enrollment Relation

StdID Subject Professor
1111-11-1111 DBMS Prof1
1111-11-1111 Math Prof2
2222-22-2222 Physics prof3
4444-44-4444 DBMS Prof4
5555-55-5555 DBMS Prof1

Table 3.6: Shuffled Student Enrollment Relation

StdID Subject Professor
1111-11-1111 Math Prof1
1111-11-1111 DBMS Prof2
2222-22-2222 DBMS prof3
4444-44-4444 Physics Prof4
5555-55-5555 DBMS Prof1

The result of the shuffling r1 using our secure cryptographic shuffling algorithm is

shown in Table 3.6. We observe that the set of functional dependencies, F , of the original

relation r1 do not hold for the shuffled relation r′
1. That is, the functional dependency F2 is

violated.
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3.3 BCNF-BASED FUNCTIONAL DEPENDENCIES PRESERVING SHUFFLE

Let a relation schemaR and its instance r, whereR in BCNF with respect to a set F of FDs

be given. We introduce Algorithm 1, which shuffles an instance r of R using the secure

cryptographic shuffling algorithm such that the functional dependencies are preserved.

Algorithm 1: BCNF-based FD preserving shuffle
Input : Relation instance r with schema R(A1, . . . , An) such that R in BCNF

with respect to a set of functional dependencies F = {F1, . . . , Fk},
where F is a canonical cover.

Output: Relation instance r′ , which is the relation instance r after shuffling the
data values of each attribute A1, . . . , An

1 Procedure BCNF-based solution(r)
2 Given F , let K = {K1, . . . , Kl} be the set of all candidate keys;
3 For each Ki bundle Ki’s attributes together (Bundle composite keys together);
4 r

′ = Shuffle r using the secure cryptographic shuffling algorithm;
5 Return r′;
6 end

In Algorithm 1, we apply the secure cryptographic shuffling algorithm on a given rela-

tion r which is in BCNF with F set of FDs, resulting in a shuffled relation r′ that satisfies

F .

Theorem 3.3. Given a relation r (with schema R) in BCNF and F set of FDs satisfied by

r, then Algorithm 1 will generate r
′

such that r
′

is shuffled and r
′

preserves F .

Proof Sketch. Consider relation instance r over schema R(A1, . . . , An), the set of func-

tional dependencies F = {F1, . . . , Fk} that hold on r, and R is in BCNF. Assume by

contradiction that Algorithm 1 did not preserve the functional dependencies in F . But

then, there must exist an Fi : Xi → Yi (Yi = R − Xi) such that r′ (the output of Algo-

rithm 1) contains two tuples t1 and t2 such that t1[Xi] = t2[Xi] and t1[Yi] ̸= t2[Yi]. Since

Fi : Xi → Yi and Xi is a key for r, there can only be one tuple in the original relation r

with values t1[Xi] = t2[Xi]. But then the shuffling algorithm could not create two different

tuples t1 & t2 such that t1[Xi] = t2[Xi]. This contradicts our initial assumption that there
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are two tuples in r′ with same values for attributes Xi but different values for attributes

Yi.

We showed that it is safe to apply the secure cryptographic shuffling algorithm in this

case with no need to bundle shuffle a LHS attributes with the corresponding RHS attributes

since the LHS of the functional dependencies in BCNF relations is a key, for which there

is a unique RHS value. As such, the risk of violating the set of functional dependencies is

eliminated.

3.4 EXPERIMENTAL RESULTS OF BCNF-BASED FUNCTIONAL DEPENDENCIES

PRESERVING SHUFFLE

Given a relation instance r with schema R such that R in BCNF with respect to a set

F of FDs, we used Algorithm 1 to evaluate the relationship between use of the secure

cryptographic shuffling algorithm on r and its impact on F (as described in section 3.3).

Our aim is to use Algorithm 1 to apply the cryptographic shuffling algorithm to a given

relation instance r and observe its performance.

Table 3.7: The original Employee relation, r2

SSN EmpName Salary
222-22-2222 James 65,000
333-33-3333 Alex 85,000
444-44-4444 Sarah 75,000
555-55-5555 Kevin 65,000
666-66-6666 Mark 75,000

Let the Employee relation, r2, in BCNF as shown in Table 3.7 be given, with the fol-

lowing set of FDs that hold for r2:

1. SSN → EmpName, and

2. SSN → Salary.
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Table 3.8: The shuffled Employee relation, r′
2

SSN EmpName Salary
333-33-3333 Kevin 75,000
222-22-2222 Mark 65,000
666-66-6666 Sarah 85,000
555-55-5555 James 75,000
444-44-4444 Alex 65,000

We implemented Algorithm 1. The performance of our implementation was compa-

rable to the performance of shuffling the original relation using the secure cryptographic

shuffling algorithm. Tables 3.7 and 3.8 show the original relation, r2, and the shuffled re-

lation, r′
2, respectively. Note that both tables satisfy FDs 1 and 2. We observe that the

resulting relation from Algorithm 1, r′
2, appears useful because there is no way for attack-

ers to detect that this relation is shuffled and not original. Therefore, we can conclude from

this experiment that it is safe to use Algorithm 1 to apply the secure cryptographic shuffling

algorithm on BCNF relations.

3.5 GENERIC FUNCTIONAL DEPENDENCY PRESERVING SHUFFLE

In this section, we present a generalization of the case of section 3.3 where we can shuffle

a given relation that is not in BCNF such that set of FDs is preserved. We introduce

Algorithm 2, a generic FD preserving shuffle.

Definition 3.4. Given a relation instance r with schema R(A1, . . . , An) and a set of FDs

F = {F1, . . . , Fl}, we say that the BCNF decomposition of R into R1, . . . , Rk is depen-

dency preserving if {F1 ∪ · · · ∪ Fk} ≡ F , where Fi(i = 1, . . . , k) is the projection of F

on Ri.

Definition 3.5. Let F be a set of functional dependencies on a relation R, a decomposition

of R into {R1, . . . , Rn} has the property of a lossless join decomposition with respect to F

if and only if the natural join of the decomposed relations R1, . . . , Rn produces the relation
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Algorithm 2: Generic FD Preserving Shuffle
Input : Relation instance r with schema R(A1, . . . , An), a canonical cover of a

set of FDs F = {F1, . . . , Fl} that hold for r
Output: Relation instance r′ , which is the relation instance r after shuffling the

data values of each attribute A1, . . . , An

1 Procedure Generic FD Preserving solution(r, F)
2 Decomposition of r into r1, . . . , rk such that ri (i = 1, . . . , k) is in BCNF form;
3 Let F ′ be the union of the FDs projected on ris ;
4 if F ′ ≡ F i.e., F ′

and F are logically equivalent then
5 for 1 ≤ i ≤ k do
6 r

′
i = Algorithm 1 (ri);

7 end
8 r

′ = r
′
1 1 · · · 1 r

′
k;

9 Return r′ ;
10 else
11 Return “FDs may be violated when shuffled" ;
12 Exit ;
13 end
14 end

R with no spurious tuples [19]. For instance, a decomposition of R into R1 and R2 is

lossless join if and only if at least one of the following dependencies is in F+:

1. R1 ∩ R2 → R1

2. R1 ∩ R2 → R2

where F+ the closure of the set F of given functional dependencies.

Theorem 3.6. Given a relation r and F set of FDs satisfied by r, Algorithm 2 preserves

FDs if the BCNF decomposition is FD preserving.

Proof Sketch. Consider relation instance r over schema R(A1, . . . , An), the set of func-

tional dependencies F = {F1, . . . , Fl} that hold on r. Let R1, . . . , Rk be a dependency-

preserving BCNF decomposition of r and F ′ the union of the projection of F on Ris.

Assume by contradiction that Algorithm 2 did not preserve a functional dependency F .

Because the decomposition was dependency preserving (F ′ ≡ F ), F must have been re-
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moved as the result of the shuffling. We know that from Theorem 3.3 that all Fi’s are

preserved in r′ . But then F must have been lost due to the natural join. When doing the

natural join, r1
′
1 · · · 1 ri

′ , the only functional dependency that may not be preserved are

the ones that bridge two relations say from a subset of attributes of r′
i (denoted as Attr(r′

i))

to a subset of attributes of r′
j , (denoted as Attr(r′

j)). That is, F : Attr(r′
i) → Attr(r′

j). Since

the decomposition was dependency preserving, this can only happen if Attr(r′
i) is a key

for r. But then, there must be only one tuple in ri (and also in r) for each unique value

combination for Attr(r′
i). This contradicts our original assumption.

The computational complexity is dominated by the complexity of the shuffling al-

gorithm (presented in [26]) and the association-rule finding algorithm (presented in [13]

and [36]). Our preprocessing, i.e., bundling the associated attributes and BCNF decompo-

sition, imposes little performance cost. The bundling is linear on the number of attributes.

The worst-case complexity of the BCNF decomposition algorithms is exponential on the

number of attributes [41, 50]. Koehler [34] presented a method that, while it has exponen-

tial complexity as the worst-case, in most cases is efficient in practice.

3.6 EXPERIMENTAL RESULTS OF GENERIC FUNCTIONAL DEPENDENCY

PRESERVING SHUFFLE

We evaluated the effectiveness of our generic functional dependency preserving shuffle (as

described in section 3.5). Our plan is to use Algorithm 2 to apply the secure cryptographic

shuffling algorithm to a given relation instance r that is not in BCNF with set F of func-

tional dependencies such that the resulting shuffled relation instance r′ satisfies F .

Given the Student relation instance, r, as shown in Table 3.9 with the following set F

of functional dependencies that holds for r:

1. SId→ SName,

2. SId→ SGPA, and
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3. DId → Dname.

We tested whether or not shuffling r using Algorithm 2 – resulting in r′ – would preserve

the set of functional dependencies for r′ .

Table 3.9: The original Student relation, r

SId SName SGPA DId DName
111 Alex 3.5 D1 Computers
111 Alex 3.5 D3 Math
222 Sarah 4.00 D4 Science
333 Kevin 3.1 D6 Stat
444 Mark 2.3 D1 Computer

Table 3.10: Decomposing Table 3.9 into sub-relations r1, r2, and r3

(a) r1

SId SName SGPA
111 Alex 3.5
222 Sarah 4.00
333 Kevin 3.1
444 Mark 2.3

(b) r2

DId DName
D1 Computers
D3 Math
D4 Science
D6 Stat

(c) r3

SId DId
111 D1
111 D3
222 D4
333 D6
444 D1
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Table 3.11: Shuffling r1, r2, and r3 in Table3.10 into r′
1, r′

2, and r′
3, respectively

(a) r1
′

SId SName SGPA
111 Mark 4.00
222 Kevin 3.5
444 Alex 3.1
333 Sarah 2.3

(b) r2
′

DId DName
D4 Math
D6 Computers
D1 Science
D3 Stat

(c) r3
′

SId DId
222 D4
111 D3
444 D1
111 D1
333 D6

Table 3.12: The shuffled Student relation, r′

SId SName SGPA DId DName
222 Kevin 3.5 D4 Math
111 Mark 4.00 D3 Stat
444 Alex 3.1 D1 Science
111 Mark 4.00 D1 Science
333 Sarah 2.3 D6 Computer

Assume that r shown in Table 3.9 is decomposed into sub-relations r1, r2, and r3 shown

in Tables 3.10a, 3.10b, and 3.10c, respectively. Our generic functional dependency pre-

serving shuffle algorithm, Algorithm 2, used Algorithm 1 to shuffle sub-relations r1, r2,
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and r3 resulting in shuffled sub-relations r′
1 (Tables 3.11a), r′

2 (Tables 3.11b), and r′
3 (Ta-

bles 3.11c), respectively. The outcome of Algorithm 2, r′ (Table 3.12), was obtained by

natural joining of the shuffled sub-relations r′
1, r′

2, and r′
3.

We observe that the set F of functional dependencies of the original relation r (Ta-

ble 3.9) is preserved in the shuffled relation r′ (Table 3.12) after using Algorithm 2 in order

to apply the secure cryptographic shuffling algorithm. We also observe the shuffled relation

r
′ becomes more useful in deceiving attackers as it looks to be a true and valuable source

of data.
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CHAPTER 4

RESTORING ORIGINAL RELATIONS

In this chapter, we demonstrate the process of restoring the original relations after applying

our secure cryptographic shuffling algorithm.

4.1 RESTORING SHUFFLED BCNF RELATIONS

Given the outcome of Algorithm 1, a shuffled relation instance r′ with the schemaR(A1, . . .

, An) such thatR in BCNF with respect to a set of functional dependencies F , we introduce

Algorithm 3, which unshuffle r′ to restore the original relation instance r.

Algorithm 3: Restoring Shuffled BCNF Relations
Input : Relation instance r′ with schema R(A1, . . . , An) such that R in BCNF

with respect to a set of functional dependencies F = {F1, . . . , Fk},
where F is a canonical cover.

Output: Relation instance r̄, which is the relation instance r′ after unshuffling the
data values of each attribute A1, . . . , An such that r̄ = r and r̄ satisfies F .

1 Procedure Restoring BCNF Relation(r
′
)

2 Given F , let K = {K1, . . . , Kl} be the set of all candidate keys;
3 Bundle Ki (i = 1, . . . , l) together (Bundle composite keys together to prevent

key violation);
4 r̄ = Unshuffle r′ using our restore algorithm (presented in [26]);
5 Return r̄;
6 end

In Algorithm 3, we apply our restore algorithm on a given relation r′ which is in BCNF

with F set of functional dependencies, resulting in a relation r̄ that is equivalent to r and

satisfies F .
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Theorem 4.1. Given a relation r
′

(with schema R) in BCNF and F set of functional de-

pendencies satisfied by r
′
, then Algorithm 3 will generate r̄ such that r̄ is equivalent to the

original relation r and r̄ satisfies F .

Sketch. Trivially follows [see Theorem 3.3].

4.2 EXPERIMENTAL RESULTS OF RESTORING SHUFFLED BCNF RELATIONS

In this section, we evaluated the effectiveness of our restoring shuffled BCNF relations (as

described in section 4.1). Our goal is use Algorithm 3 to restore the original relation r.

Given the output of Algorithm 1, a relation instance r′ with schema R in BCNF, as shown

in table 4.2, with the following set F of functional dependencies that holds for r′:

1. SSN → EmpName, and

2. SSN → Salary.

Table 4.1: The original Employee relation, r

SSN EmpName Salary
222-22-2222 James 35,000
333-33-3333 Alex 150,000
444-44-4444 Sarah 130,000
555-55-5555 Kevin 35,000
666-66-6666 Mark 130,000

Table 4.2: The output of Algorithm 1, r′

SSN EmpName Salary
333-33-3333 Kevin 130,000
555-55-5555 James 35,000
666-66-6666 Sarah 150,000
222-22-2222 Mark 130,000
444-44-4444 Alex 35,000
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We tested whether or not restoring r′ using Algorithm 3 – resulting in r̄ such that r̄ is

equivalent to the original relation r, as shown in table 4.1, and r̄ satisfies F .

Table 4.3: The output of Algorithm 3, r̄

SSN EmpName Salary
222-22-2222 James 35,000
333-33-3333 Alex 150,000
444-44-4444 Sarah 130,000
555-55-5555 Kevin 35,000
666-66-6666 Mark 130,000

The result of restoring r′ using Algorithm 3 is shown in Table 4.3. We observe that

Algorithm 3 succeeded in restoring the original relation r such that r̄ is equivalent to the

original relation r and the set F of functional dependencies r̄ hold for r.

4.3 RESTORING SHUFFLED RELATIONS USING GENERIC FUNCTIONAL

DEPENDENCIES PRESERVING SHUFFLE

Given the outcome of Algorithm 2, a shuffled relation instance r′ with the schema R(A1,

. . . , An) such that R is not in BCNF with respect to a set of functional dependencies F , we

introduce Algorithm 4, which unshuffle r′ to restore the original relation instance r.

In Algorithm 4, we apply our restore algorithm on a given relation instance r′ which is

not in BCNF with F ′ set of functional dependencies, resulting in a relation r̄ with F̄ set of

functional dependencies such that r̄ is equivalent to the original relation instance r and F̄

≡ F ′ and thereby F̄ ≡ F .

Theorem 4.2. Given a shuffled relation r
′
, F ′

set of functional dependencies satisfied by

r
′
, and the history of decomposing the original relation r into r

′
, Algorithm 4 reconstruct

the relation r̄ such that r̄ is equivalent to the original relation r and r̄ satisfies F .

Proof Sketch. Consider relation instance r′ over schema R(A1, . . . , An), and the set of

functional dependencies F ′ = {F ′
1, . . . , F

′
j} that hold for r′ , and the history of decompos-
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Algorithm 4: Restoring Shuffled Generic Relations
Input :

1. Relation instance r′ with schema R(A1, . . . , An),

2. Set of functional dependencies F ′ = {F ′
1, . . . , F

′
j} that hold for r′ ,

3. History of BCNF decomposition of R into R1, . . . , Rj that was used for the
shuffling with projection of F ′ on Ri (i = 1, . . . , j) s.t. {F̄1, . . . , F̄j} ≡ F ′ .

Output: Relation instance r̄, which is the relation instance r′ after unshuffling the
data values of each attribute A1, . . . , An and set of functional
dependencies F̄ that hold for r̄, where F̄ ≡ F ′ .

1 Procedure Restoring Generic Relations(r, F)
2 for 1 ≤ i ≤ j do
3 r̄i = Algorithm 3 (r′

i);
4 F̄i = F ′

i (Proved in Theorem 3.3) ;
5 end
6 r̄ = r̄1 1 · · · 1 r̄j;
7 F̄ = F̄1 ∪ · · · ∪ F̄j;
8 Return r̄, F̄ ;
9 end

ing the original relation r into r′ , where r′
1, . . . , r

′
j is the dependency-preserving BCNF

decomposition of r′ .

Assume by contradiction that Algorithm 4 did not reconstruct the relation r̄ such that

r̄ is equivalent to the original relation r and r̄ satisfies F . But then, there must exist be

spurious tuples in r̄ that are not in r′ . Since the decomposition is in BCNF and dependency

preserving, it has the property of a lossless join decomposition. But then Algorithm 4 will

not generate spurious tuples in r̄.

This contradicts our initial assumption that there are spurious tuples in r̄ that are not in

r
′ .
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4.4 EXPERIMENTAL RESULTS OF RESTORING SHUFFLED RELATIONS USING

GENERIC FUNCTIONAL DEPENDENCIES PRESERVING SHUFFLE

In this section, we evaluated the effectiveness of our restoring generic relations(as de-

scribed in section 4.3). Our goal is use Algorithm 4 to restore the original relation r.

Table 4.4: The original Student relation, r

SId SName SGPA DId DName
111 Alex 3.5 D1 Computers
111 Alex 3.5 D3 Math
222 Sarah 4.00 D4 Science
333 Kevin 3.1 D6 Stat
444 Mark 2.3 D1 Computer

Table 4.5: The output of Algorithm 2, r′

SId SName SGPA DId DName
222 Kevin 3.5 D4 Math
111 Mark 4.00 D3 Stat
444 Alex 3.1 D1 Science
111 Mark 4.00 D1 Science
333 Sarah 2.3 D6 Computer

Given the outcome of Algorithm 2,r′ , a shuffled relation instance r′ with the schema

R(A1, . . . , An) such that R is not in BCNF, as shown in table 4.5, with the following set

F ′ of functional dependencies that holds for r′:

1. SId→ SName,

2. SId→ SGPA, and

3. DId → Dname.

Also, given the history of BCNF decomposition of R into R1, . . . , Rj that was used for

the shuffling with projection of F ′ on Ri (i = 1, . . . , j) such that {F̄1, . . . , F̄j} ≡ F ′ . We
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tested whether or not restoring r′ using Algorithm 4 – resulting in r̄ such that r̄ is equivalent

to the original relation r, as shown in table 4.4, and F̄ ≡ F ′ .

Table 4.6: Decomposing r′ (Table 4.5) (the output of Algorithm 2) into sub-relations r′
1,

r
′
2, and r′

3, respectively.

(a) r1
′

SId SName SGPA
111 Mark 4.00
222 Kevin 3.5
444 Alex 3.1
333 Sarah 2.3

(b) r2
′

DId DName
D4 Math
D6 Computers
D1 Science
D3 Stat

(c) r3
′

SId DId
222 D4
111 D3
444 D1
111 D1
333 D6
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Table 4.7: Restoring sub-relations r′
1, r′

2, and r′
3 in Table 4.6 into r̄1, r̄2, and r̄3 respectively.

(a) r̄1

SId SName SGPA
111 Alex 3.5
222 Sarah 4.00
333 Kevin 3.1
444 Mark 2.3

(b) r̄2

DId DName
D1 Computers
D3 Math
D4 Science
D6 Stat

(c) r̄3

SId DId
111 D1
111 D3
222 D4
333 D6
444 D1

Table 4.8: The restored relation, r̄.

SId SName SGPA DId DName
111 Alex 3.5 D1 Computers
111 Alex 3.5 D3 Math
222 Sarah 4.00 D4 Science
333 Kevin 3.1 D6 Stat
444 Mark 2.3 D1 Computer

Given the history of BCNF decomposition of the original relation r with projection of

F on Ri (i = 1, . . . , j) such that {F ′
1, . . . ,F

′
j} ≡ F , we decompose r′ (the output of Algo-

rithm 2) shown in Table 4.5 into sub-relations r′
1, r′

2, and r′
3 as shown in Tables 4.6a, 4.6b,

and 4.6c respectively. Our restoring shuffled generic relations algorithm, Algorithm 4, used
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Algorithm 3 to restore the shuffled sub-relations r′
1, r′

2, and r′
3 resulting in unshuffled sub-

relations r̄1, r̄2, and r̄3 as shown in Tables 4.7a, 4.7b and 4.7c, respectively. The outcome

of Algorithm 4, r̄, was obtained by natural joining of the unshuffled sub-relations r̄1, r̄2,

and r̄3.

We observe that Algorithm 4 succeeded in reconstruct the relation r̄ such that r̄ is

equivalent to the original relation r and r̄ satisfies F

We also observe that the set F of functional dependencies of the original relation r

shown in Table 4.4 is preserved in the unshuffled relation r̄ (Table 4.8) after using Algo-

rithm 4 to restore the shuffled generic relations. Therefore, we can conclude that the set

F̄ of functional dependencies of (the output of Algorithm 4) is equivalent to the set F ′ of

functional dependencies (the output of Algorithm 2) and thereby F̄ ≡ F .
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CHAPTER 5

SHUFFLING ALGORITHMS AND DATA-DRIVEN

ASSOCIATION DISCOVERY

Data-driven association discovery refers to the process of searching for and identifying

relationships among attributes based on empirical data. It allows one to determine whether

data values corresponding to one attribute are significantly related to data values corre-

sponding to another attribute.

In this chapter, we aim to define methods for determining the existence of a relationship

between attributes in a given relation instance r.

To find an association between attributes, one must measure the statistical strength of

the relationship between them. This can be found by using the χ2 test (for categorical

attributes) [13], Pearsons Correlation Coefficient PCC (also known as Pearsons r) test (for

numerical Attributes) [36], or the ANOVA test when one attribute is categorical and the

other is numerical [64]. In the following sections, we demonstrate how to use statistical

methods to extract associations between attributes in a relation r. We also investigate risks

relating to the use of data-driven association discovery methods by malicious users.

5.1 ASSOCIATION GRAPH

We can utilize statistical tests to build an association graph, G, which is defined as an

undirected graph G = (V,E) where V is the set of vertices, which represent the set of

attributes, and E is the set of links, which indicate whether any two attributes in the graph

are associated or not. The association graphG allows us to visualize the association among
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attributes in a given relation instance r.

Definition 5.1. An association graph G is defined as G = (V,E), where in V is the set

of vertices, which represent the set of attributes, and E is the set of links, which indicate

whether any two attributes in the graph are associated or not.

When analyzing the association between two attributes Ai and Aj in a given relation

instance r, we measure the degree of dependency between them based their data values. If

Ai and Aj are associated in r, then there must be a link between Vi and Vj in G.

Within relational database, there are three types of association discovery between at-

tributes:

(1) Categorical Attributes Association: two categorical attributes Ai and Aj in relation

instance r are associated if there is a link between Vi and Vj in G such that the strength

of the link Eij is significant when using χ2 statistical test.

(2) Numerical Attributes Association: two numerical attributes Ai and Aj in relation in-

stance r are associated if there is a link between Vi and Vj inG such that the strength of

the link Eij is significant when using Pearson Correlation Coefficient PCC statistical

test.

(3) Mixed Attributes Association: two mixed attributes Ai and Aj , where Ai is categorical

and Aj is numerical, in relation instance r are associated if there is a link between Vi

and Vj in G such that the strength of the link Eij is significant when using the ANOVA

statistical test.

5.2 MODELING AND EXTRACTION OF DATA-DRIVEN ASSOCIATION-BASED

SHUFFLE

In this section, we introduce Algorithm 5 which helps us to identify relationships among

attributes of a given relation instance r. It also allows us to detect particular subsets of
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attributes in r that must be shuffled together. The association between two attributes Ai

and Aj can be notated as follows:

Notation 5.2. Let Ai and Aj be two attributes. We denote an association between Ai and

Aj as Ai a Aj .

Algorithm 5: Modeling and Extraction of Association between Attributes
Input : Relation instance r with schema R(A1, . . . , An)
Output: Relation instance r′ , which is the relation instance r after shuffling the

data values of each attribute A1, . . . , An such that data-driven associated
attributes are shuffled together.

1 Procedure Testing for Attributes Association(r)
2 Start by drawing an undirected graph G = (V,E), where V is {A1, ...., An}

and E is empty;
3 for every two vertices Ai and Aj in G do
4 if Ai and Aj are both categorical then
5 Use χ2 to measure the strength of association;
6 if the association is significant then
7 Draw a link between Ai and Aj;
8 end
9 else if Ai and Aj are both numerical then

10 Use PCC to measure the strength of association;
11 if the association is significant then
12 Draw a link between Ai and Aj;
13 end
14 else
15 Use ANOVA test to measure the strength of association;
16 if the association is significant then
17 Draw a link between Ai and Aj;
18 end
19 end
20 end
21 Let Si (i = 1, . . . , k) be a strongly connected components in G;
22 r

′ = Shuffle r using the secure cryptographic shuffling algorithm such that
every subset of attributes Si is bundle shuffled together;

23 Return r′;
24 end

In Algorithm 5, we used the χ2 test, Pearson correlation coefficient test, and ANOVA

test to find associations among the database attributes. If we detect an association among

48



www.manaraa.com

attributes, it follows that a potential attacker may also detect an association among values

of these attributes. Our goal is to identify sets of attributes that should be shuffled together

to reduce or completely avoid the security risks as attackers may be able to discover that

the database is a corrupted database (shuffled database). Our empirical results are given in

section 5.3.

Theorem 5.3. Given a relation instance r with schema R(A1, . . . , An), Algorithm 5 will

generate r
′
such that r

′
satisfies data driven associations if we bundle shuffle the associated

subset of attributes, Si ∈ {A1, . . . , An}, together.

Proof Sketch. Trivially follows.

Property 5.4. Let Ai, Aj and Ak be attributes in a relation R. We say that an attribute

association is:

i Transitive ,i.e., if Ai a Aj and Aj a Ak then Ai a Ak.

ii Reflexive i.e., If Ai a Ai

iii Symmetric i.e if Ai a Aj then Aj a Ai.

5.3 EXPERIMENTAL RESULTS OF MODELING AND EXTRACTION OF DATA-DRIVEN

ASSOCIATION-BASED SHUFFLE

In our last experiment, we validate the effectiveness of modeling and extraction of data-

driven association-based shuffling discussed in (section 5.2) in order to enhance the security

of the cryptographic shuffling algorithm. Our aim is to use Algorithm 5 to discover sets of

attributes that want to be shuffled together to increase the resulting diffusion.
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Table 5.1: Sample records of a bank dataset

ID Sex Income Car SavingAcc
ID12101 FEMALE 17546 NO NO
ID12102 MALE 30085.1 YES NO
ID12103 FEMALE 16575.4 YES YES
ID12104 FEMALE 20375.4 NO NO
ID12105 FEMALE 50576.3 NO YES

...
...

...
...

...
ID12699 MALE 14711.8 NO YES
ID12700 MALE 26671.6 YES NO

We evaluate Algorithm 5 on a bank dataset, which consists of 600 records [sample

records are shown in Table 5.1]. We aim to determine viable sets of semantically-associated

attributes for bundle shuffling in a way that minimizes risk of inference.

The results of using Algorithm 5 to measure the statistical strength of data-driven as-

sociation between attributes in the bank dataset are shown in Table 5.2. The outcome of

Algorithm 5 is the association graph G shown in Figure 5.1. The association graph indi-

cates which attributes must be shuffled together to prevent the hazard of inference prob-

lems. That is, each set of strongly connected components is a set of attributes that require

bundle shuffling by assigning the same key set to them. S ={{Car, Income, SavingAcc},

{ID}, {Sex}} is the set of sets of attributes to be bundle-shuffled.

Table 5.2: The results of measuring statistical strength of data-driven association between
bank dataset attributes

Var 1 Var 2 Test P-value Sig
Sex Car χ2 0.870 No
Sex Income Anova 0.560 No
Sex SavingAcc χ2 0.86 No

SavingAcc Income Anova 0.000 Yes
SavingAcc Car χ2 0.401 No

Car Income Anova 0.046 Yes
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We observe that attributes income, SavingAcc, and car are associated in G (Car a In-

come and Income a SavingAcc) and thus require bundle shuffling when using the secure

cryptographic shuffling algorithm. We also observe that attributes ID and Sex are indepen-

dent and not semantically associated to any other attributes. Thus, these attributes have no

special requirements related to bundle shuffling. We showed that Algorithm 5 succeeded in

modeling and extracting data-driven association among attributes of the given bank dataset.

S C

I

SA

ID

Figure 5.1: The resulting Association Graph G of the bank database.

51



www.manaraa.com

CHAPTER 6

MODELING CONCEPT DRIFT IN THE CONTEXT OF

DISCRETE BAYESIAN NETWORKS

6.1 INTRODUCTION

Concept drift is a significant challenge that greatly influences the accuracy and reliability

of machine learning models. Therefore, there is a need to detect concept drift in order to

ensure the validity of learned models. In this dissertation, we study the issue of concept

drift in the context of discrete Bayesian networks. We propose a probabilistic graphical

model framework to explicitly detect the presence of concept drift using latent variables.

We employ latent variables to model real concept drift and uncertainty drift over time.

For modeling real concept drift, we propose to monitor the mean of the distribution of the

latent variable over time. For modeling uncertainty drift, we suggest to monitor the change

in beliefs of the latent variable over time, i.e., we monitor the maximum value that the

probability density function of the distribution takes over time.

The main focus of this chapter of the dissertation is to propose a probabilistic graphical

model framework for detecting concept drift in the context of discrete Bayesian networks.

Our proposed technique for detecting concept drift is based on using latent variables. The

proposed modeling framework is an extension of Borchani et al. [12] framework such that it

is directly applicable to discrete Bayesian networks. Borchani et al. represent concept drift

using unobserved variables in continuous domains, namely in conditional linear Gaussian

models. Our modeling framework for detecting the presence of concept drift using latent

variables is applicable to general Bayesian network models and not limited to naive Bayes
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classifier (previous modeling frameworks [12, 14] are limited to naive Bayes classifiers).

In addition to modeling the posterior probability drift, we propose a new technique for

modeling uncertainty, i.e., the amount of belief, across time.

We have implemented our proposed frameworks and present our empirical results using

two of the most commonly used Bayesian networks in Bayesian experiments, namely the

Burglary-Earthquake Network and the Chest Clinic network.

This chapter of the dissertation is structured as follows. In section 6.2, we present the

problem setting. In section 6.3, we present our framework for detecting concept drift using

latent variables in discrete Bayesian networks. In section 6.4, we extend our modeling

framework into higher dimensions. In section 6.5 we present our empirical results.

6.2 PROBLEM SETTING

We focus on modeling concept drift in the context of discrete Bayesian networks. In a

nonstationary environment, we assume that at each time point t (for t = 1, 2, . . . ) data

arrives in a batch (a.k.a. a window), which is a collection of cases. LetBatch [A1, . . . , Am]

be the schema of the incoming batch with attributes A1, . . . , Am. We assume without loss

of generality that the incoming batches have equal sizes, i.e., each batch contains n cases.

LetBatch t = {caset
1, . . . , case

t
n} be a collection of cases (a.k.a. observations or findings)

that arrives at time t.

case1
1, case

1
2, . . . , case

1
n︸ ︷︷ ︸

Batch 1, t = 1

, case2
1, case

2
2, . . . , case

2
n︸ ︷︷ ︸

Batch 2, t = 2

, . . .

Each finding, denoted as case, is over attributes A1, . . . , Am and of the form case = <

A1 = v1, . . . , Am = vm > (or simply can be written as case = < v1, . . . , vm >), such

that vk is the value of attribute Ak (1 ≤ k ≤ m). When a new batch Batch t+ 1 arrives at

time point t+1, the Bayesian network model can simply be updated using Bayes’ theorem.

To detect the presence of concept drift between two time points t = i and t = i+ 1, we

consider two types of drifts as follows: (1) Posterior Distribution Drift, and (2) Uncertainty
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Drift.

6.2.1 POSTERIOR DISTRIBUTION DRIFT; A.K.A. REAL CONCEPT DRIFT

Posterior distribution drift occurs when the conditional probability changes on the target

variable whereas the input variables remain unchanged [24]. That is, the value of the

posterior probability at time t = i, Pti
(y | A), is not equal to the value of the posterior

probability at time t = i+ 1, Pti+1(y | A).

In Bayesian statistics, Bayes’ theorem can be written in a useful form for Bayesian

network update and inference as follows: The posterior probability is proportional to the

product of the prior probability and the likelihood (Posterior probability ∝ Prior probability

× Likelihood [39]). Having a prior that is conjugate for the likelihood function will make

it mathematically convenient to calculate the posterior distribution since the posterior dis-

tribution will be from the same family of distribution as the prior [56]. For instance, multi-

plying a beta-distributed prior,Beta(α, β), with a binomial-distributed likelihood function,

Binomial(n, θ), yields a beta-distributed posterior distribution, Beta(q + α, n − q + β),

where n is the total number of cases, and q is the count of successes [3].

In what follows, we consider detecting the presence of posterior distribution drift in the

context of discrete Bayesian networks with respect to a random variable X that is beta-

distributed, which we denote as X ∼ Beta(α, β). We capture the existence of posterior

distribution drift by monitoring the mean of the beta distribution at every time point t = i,

denoted as µi, i.e., the expected value ofX at every time point t = i, E(X), as follows:

µi = E(X) = qi + α

α + ni + β
(6.1)

where ni and qi are the total number of cases and the count of successes at time t = i,

respectively, and hyperparameters α, β are greater than or equal to 1.
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6.2.2 UNCERTAINTY DRIFT

Measuring the amount of uncertainty in input data is defined as entropy [61]. Uncertainty

drift is a variable that reflects the change in beliefs over time. That is, for a random variable

X , the maximum value that a probability density function fi(x;α, β) takes at time t = i

is not equal to the maximum value that a probability density function fi+1(x;α, β) takes at

time t = i + 1. This kind of drift is mainly caused by the change in the total number of

observed cases. It is important to point out that modeling uncertainty drift in the context

of Bayesian networks is powerful as it is a sensitive diagnostic for detecting real concept

drift.

Herein, we consider detecting the presence of uncertainty drift in the context of dis-

crete Bayesian networks with respect to a random variable X is beta-distributed, X ∼

Beta(α, β). We capture the existence of uncertainty drift by monitoring the maximum

value that the probability density function of the beta distribution takes at every time point

t = i, which we denote as ψi, as follows:

ψi = max
X=x

fi(x;α, β, ni, qi)

= fi(
qi + α− 1

α + ni + β − 2
;α, β, ni, qi)

(6.2)

where ni and qi are the total number of cases and the count of successes at time t = i,

respectively, x is the mode of the beta distribution (0 ≤ x ≤ 1), and hyperparameters α, β

are greater than or equal to 1.

In our setting, we iterate over time steps (t = 1, 2, . . . ). At each time point t = i, we

use the incoming batch, Batch i, to update the current Bayesian network model. We then

use our approaches to detect the existence of model drift. we assume that the distribution

of the data does not change inside the batch, i.e., we capture the presence of model drift

across time steps (t = 1, 2, . . . ) and not within the set of observations arrives at a particular

time point. If the variations in the values of µi and ψi are important, we conclude that our

Bayesian network model has drifted.
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We summarize the notations we use in this chapter in Table 6.1.

Table 6.1: Notations.

Notation Description
Batch [A1, ...,Am] The schema of incoming batch with attributes A1, ..., Am

Batch i A collection of cases that arrives at time i
caseij The j th observation of Batch i
µi The mean of the posterior probability at time i
ψi The maximum value that the PDF takes at time i
X A random variable
X ∼ Beta(α, β) A random variable that is beta-distributed
X ∼ Dir(α1, . . . , αr) A random variable that is Dirichlet-distributed

6.3 MODELING CONCEPT DRIFT USING LATENT VARIABLES

In this section, we present a modeling technique for detecting concept drift in discrete

Bayesian networks. We explicitly model concept drift using latent variables. To avoid

unnecessary complication, we assume that only posterior distribution and uncertainty drift

over time, i.e., for each edge A → B in a Bayesian network model BN1, we detect the

existence of concept drift by monitoring the posterior distribution drift and uncertainty drift

of A → B over time.

Our modeling technique for detecting the presence of concept drift in discrete Bayesian

networks is described using plate notation as shown in Figure 6.1. The fundamental idea

of our modeling approach is to add a latent node for each edge A → B in a given Bayesian

network modelBN1. We call this latent node U t
AB. It is important to point out that for each

collection of observation j of time t, the unobserved node U t
AB is added as the child of the

observed nodes At
j and Bt

j .

The latent variable U t
AB captures the posterior drift and the uncertainty drift for each

collection of observations j of time t. It is essential to point to the fact that both values of

observed variables At
j and Bt

j contribute to the drift of the latent variable U t
AB as described

in the following section.
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θu U t
AB

αu

βu

At
j θa

αa

βa

Bt
j θb

αb

βbj

t

Figure 6.1: Modeling concept drift with latent variables in discrete Bayesian networks. At
j

and Bt
j are observed nodes. U t

AB is a latent (unobserved) node. θa, θb, and θu are model
parameters. αa, βa, αb, βb, αu, and βu are model hyperparameters.

6.3.1 POSTERIOR DISTRIBUTION DRIFT

In our modeling technique presented in Figure 6.1, the posterior distribution drift of the

latent variable U t
AB that is monitored at each time point t = i is as follows:

µi = Pti
(U t

AB | At, Bt)

= qi + αu

αu + ni + βu

where ni and qi are the total number of cases and the count of successes at time t = i,

respectively, and hyperparameters αu, βu are greater than or equal to 1.

6.3.2 UNCERTAINTY DRIFT

In our modeling technique shown in Figure 6.1, to capture the uncertainty drift of the latent

variable U t
AB over time, we monitor the maximum value that a probability density function
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fi(x;αu, βu) of the latent variable takes at each time point t = i as follows:

ψi = max
X=x

fi(x;αu, βu, ni, qi)

= fi(
qi + αu − 1

αi + ni + βu − 2
;αu, βu, ni, qi)

where ni and qi are the total number of cases and the count of successes at time t = i,

respectively, x is the mode of the beta distribution (0 ≤ x ≤ 1), and hyperparameters αu,

βu are greater than or equal to 1.

It is important to emphasize that our modeling technique, at each time point t = i,

receives j observations where j = 1 to n. These observations are used to update the

Bayesian network model. The latent variable U t
AB is then used to capture the presence of

posterior drift (i.e., drift in the value of µi) and uncertainty drift (i.e., drift in the value of

ψi). If the values of µi and ψi vary significantly, we conclude that our Bayesian network

model has drifted.

The a priori expected values of concept and uncertainty drifts can be expressed via the

prior distribution for the latent node U t
AB. We use hyperparameters αu and βu to express

the prior knowledge that we may have about concept and uncertainty drifts at a particular

time point.

An important point to be made concerning the development of our modeling technique

for detecting concept drift (presented in Figure 6.1) is that it contains no causal interpre-

tation. We do not place any causal assumption on the interaction between the observed

variables and the latent variable. Despite the fact that it is mathematically feasible to build

causal and non-causal modeling techniques (as shown in Figure 6.2) to detect the pres-

ence of concept drift, it is not necessary to consider causal effects between variables as

these effects are not the main focus of our modeling approach. For this reason, we tolerate

that the interpretation of our modeling approach of concept drift is merely statistical, i.e.,

associational.
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U t
AB At

j

Bt
j

j

t

(a) Non-causal.

U t
AB At

j

Bt
j

j

t

(b) Causal.

Figure 6.2: Options for building a modeling approach for detecting concept drift.

6.4 GENERALIZATION OF OUR FRAMEWORK INTO HIGHER DIMENSIONS

To expand our modeling framework for variables with more than two states, we can use

the Dirichlet distribution, which is a continuous multivariate probability distribution. In

Bayesian statistics, Dirichlet distribution, which is denoted as Dir(α1, . . . , αr), is parame-

terized by r hyperparameters α1, . . . , αr such that αi (1 ≤ i ≤ r) is integer and αi ≥ 1 [48].

This distribution is the generalization of the beta distribution for r > 2, i.e., beta is a special

case when r = 2.

A Dirichlet distributed prior is conjugate for the likelihood function that is multi-

nomial distributed. That is, multiplying a Dirichlet-distributed prior, Dir(α1, . . . , αr),

with a multinomial-distributed likelihood function,Multi(w1 , . . . , wr; c1, . . . , cr), yields a

Dirichlet-distributed posterior distribution,Dir(α1 +c1, . . . , αr +cr), where α1, . . . , αr are

Dirichlet distribution hyperparameters, w1, . . . , wr are Dirichlet distributed random vari-
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ables, and c1, . . . , cr are the number of occurrences of each category.

We focus on detecting the presence of posterior distribution drift in the context of dis-

crete Bayesian networks with respect to a random variable X = [X1, ...,Xr] that is

Dirichlet-distributed, which we denote asX ∼ Dir(α1, . . . , αr). We capture the existence

of posterior distribution drift by monitoring the mean of the Dirichlet distribution at every

time point t = i, denoted as µi, i.e., the expected value of Xj at every time point t = i,

E(Xj), as follows:

µi = E(Xj)

= αj + cj

αall

where αall = ∑r
s=1 αs + cs and cj is the number of occurrences ofXj .

In addition to detecting the posterior drift, we consider detecting the presence of uncer-

tainty drift in the context of discrete Bayesian networks with respect to a random variable

X is Dirichlet-distributed as described above. We capture the existence of uncertainty

drift by monitoring the maximum value of Xj that the probability density function of the

Dirichlet distribution takes at every time point t = i, which we denote as ψi, as follows:

ψi = max
Xj=x

fi(x;α, β, αall, cj)

= fi(
αj + cj − 1
αall − r

;α, β, αall, cj)

where αj+cj−1
αall−r

is the mode of the Dirichlet distribution.

6.5 EMPIRICAL RESULTS

We have implemented our modeling framework and tested our approach using two of the

most commonly used example networks in Bayesian experiments, Burglary-Earthquake

Network and Chest Clinic network.
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6.5.1 BURGLARY-EARTHQUAKE NETWORK

The Burglary-Earthquake Network was created by Pearl [53] and is a commonly used ex-

ample in Bayesian networks. As shown in Figure 6.3, the Burglary-Earthquake Network is

a fictitious network that could be used to model an alarm system in a house. The network

consists of five nodes and four edges. The nodes are as follows:

(1) Node B shows if there is a burglary,

(2) Node E shows whether there is an earthquake,

(3) Node A shows if the alarm goes off,

(4) Node M shows if Mary calls, and

(5) Node J shows if John calls.

The causal relations between the nodes in this network is expressed by directed edges. For

instance, the edge B → A means that burglary may cause the alarm to be activated and so

on. We refer the readers to [53] for a full description of this network.

M

E

A

J

B

Figure 6.3: The original Burglary-Earthquake Network.

We apply our approach for detecting the presence of concept drift in discrete domains

over time to the Burglary-Earthquake Network. To set up our experiment, we have im-

plemented this network using HuginTM Research 8.4. HuginTM case generator [40, 49] is
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then used to generate 15 simulated datasets of 1, 000 cases each. These datasets are named

Batch 1 through Batch 15. During the simulation process of some datasets, the posterior

probabilities are changed in order to simulate the existence of concept drift as follows:

(1) The edge B → A:

(i) the posterior probabilities, P (A = F | B = F ) and P (A = T | B = F ),

are changed during the simulation process of datasets Batch 3, Batch 7, and

Batch 12.

(ii) the posterior probabilities, P (A = T | B = F ) and P (A = T | B = T ), are

changed during the simulation process of the dataset Batch 3.

(2) The edge E → A: the posterior probabilities, P (A = F | E = F ) and P (A = T |

E = F ), are changed during the simulation process of the dataset Batch 4.

(3) The edge A → J : the posterior probabilities, P (J = F | A = T ), is changed during

the simulation process of the dataset Batch 7.

(4) The edge A → M : the posterior probabilities, P (M = F | A = F ) and P (M = T |

A = T ), are changed during the simulation process of the dataset Batch 7.

In our experiment, we assume that at each time point t (t = 1, . . . , 15), we receive Batch t

which has j instances (we set j = 1, 000 cases).

To implement our framework, we added a latent node for each edge in the Burglary-

Earthquake Network. That is, we added latent nodes U t
BA, U t

EA, U t
AJ , and U t

AM to detect

the presence of real concept drift and uncertainty drift for the edges B → A, E → A,

A → J , and A → M , respectively, as shown in Figure 6.4. We assume that we have no

prior knowledge about concept drift. That is, we assume that all hyperparameters of the

latent variables, α(.) and β(.), are equal to 1.
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Figure 6.4: Our proposed framework for modeling concept drift with latent variables in the
Burglary-Earthquake Network.

The results of using our framework to detect the presence of real concept drift and

uncertainty drift are summarized in Table 6.2 and Table 6.3, respectively. Note that values

shown in bold in Table 6.2 and Table 6.3 indicate the presence of drift.

Our framework succeeded in detecting the existence of real concept drift and uncer-

tainty drift. We observe that a change in the posterior probability and the uncertainty is

reflected by a variation in the evolution of the corresponding latent variable. For instance,

we observe drifts in the posterior probabilities and the uncertainties of the latent variable

U t
BA, namely when U = u | B = F, A = F and U = u | B = F, A = T , at time points 3,

7, and 12. We also observe that the posterior and the uncertainty of the latent variable U t
BA

drift at time point 3 namely when U = u | B = T, A = F and U = u | B = T, A = T .

We observe that our framework is sensitive to changes in the underlying distribution of

data that newly incoming batches may cause. That is, if the number of observations in the

newly incoming Batch t at time t is less than the expected number of observations, then

the framework shall report a drop in the posterior and the uncertainty at time t and vice

versa. For instance, for the edge B → A, namely when U = u | B = F, A = F , our
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Table 6.2: Results of using our framework to detect the presence of real concept drift in the
Burglary-Earthquake Network.

(a) The result of using the latent variable U t
BA to detect the presence of real concept drift for the

edge B → A.

Posterior of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

B=F,A=F 0.98 0.98 0.94 0.95 0.96 0.96 0.94 0.95 0.96 0.96 0.96 0.94 0.95 0.95 0.96
U t

B=F,A=T 0.006 0.006 0.04 0.032 0.027 0.024 0.04 0.032 0.029 0.027 0.026 0.04 0.032 0.031 0.029
U t

B=T,A=F 0.0005 0.0005 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
U t

B=T,A=T 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(b) The result of using the latent variable U t
EA to detect the presence of real concept drift for the

edge E → A.

Posterior of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

E=F,A=F 0.96 0.96 0.96 0.92 0.93 0.93 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95
U t

E=F,A=T 0.01 0.01 0.01 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02
U t

E=T,A=F 0.016 0.015 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
U t

E=T,A=T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(c) The result of using the latent variable U t
AJ to detect the presence of real concept drift for the

edge A → J .

Posterior of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

A=F,J=F 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
U t

A=F,J=T 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
U t

A=T,J=F 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.003
U t

A=T,J=T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(d) The result of using the latent variable U t
AM to detect the presence of real concept drift for the

edge A → M .
Posterior of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

A=F,M=F 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96
U t

A=F,M=T 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
U t

A=T,M=F 0.0059 0.0055 0.0053 0.0052 0.0053 0.0054 0.0055 0.0054 0.0054 0.0054 0.0056 0.0058 0.0059 0.0062 0.0063
U t

A=T,M=T 0.012 0.011 0.011 0.011 0.011 0.010 0.031 0.029 0.027 0.025 0.024 0.023 0.022 0.021 0.020

framework captured a drop in the posterior and uncertainty drifts in the incoming batch at

time point t = 3, Batch 3. This drop is due to that fact that the number of observed cases

in Batch 3 was less than the expected number of cases.

It should be noted that after each drift, the values of the posterior and uncertainty will

be smoothly re-increasing/re-decreasing attempting to recover from the drift. It is also im-

portant to point out that if the number of cases in the newly incoming batch is as expected,

our framework concludes that there is no drift to anticipate, and thus no action needs to be

taken. Explanations of the other experiments for other edges trivially follow the explana-

tion of the edge B → A.
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Table 6.3: Results of using our framework to detect the presence of uncertainty drift in the
Burglary-Earthquake Network.

(a) The result of using the latent variable U t
BA to detect the presence of uncertainty drift for the edge

B → A.
Uncertainty of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

B=F,A=F 100.12 141.89 92.23 117.43 139.34 160.91 149.16 165.48 181.69 196.20 210.32 200.34 213.09 225.98 238.56
U t

B=F,A=T 176.08 239.53 110.58 143.84 173.97 203.90 179.13 200.81 223.02 243.46 262.87 238.04 255.17 271.71 288.88
U t

B=T,A=F 368.79 736.67 419.45 559.04 659.50 791.25 876.52 1001.63 1075.17 1100.22 1210.16 1272.71 1332.53 1434.97 1489.15
U t

B=T,A=T 120.16 174.42 172.15 209.05 239.86 269.18 270.64 293.38 315.84 335.86 354.83 371.80 389.11 408.88 425.84

(b) The result of using the latent variable U t
EA to detect the presence of uncertainty drift for the

edge E → A.
Uncertainty of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

E=F,A=F 65.90 93.85 118.30 93.13 110.12 125.49 139.30 152.34 165.06 177.75 189.38 200.50 211.33 222.22 232.59
U t

E=F,A=T 110.77 160.13 203.07 109.76 133.27 156.12 177.12 197.56 217.20 236.51 256.01 274.14 291.73 310.17 327.28
U t

E=T,A=F 103.32 148.89 192.56 224.58 252.62 272.56 291.30 310.42 327.11 348.07 361.79 379.68 396.79 413.21 429.03
U t

E=T,A=T 125.87 174.43 212.23 241.51 270.10 295.95 319.71 339.92 362.59 385.71 407.63 425.18 443.61 461.32 479.88

(c) The result of using the latent variable U t
AJ to detect the presence of uncertainty drift for the edge

A → J .
Uncertainty of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

A=F,J=F 50.10 70.86 86.79 99.88 111.89 123.16 132.71 142.09 150.68 158.79 166.51 173.99 181.16 188.05 195.24
U t

A=F,J=T 57.31 81.07 98.99 113.62 127.27 139.17 153.76 164.29 174.01 183.21 191.80 200.35 208.54 215.99 223.75
U t

A=T,J=F 271.21 391.32 482.51 559.05 626.30 687.01 459.35 511.28 560.94 608.57 647.27 684.19 726.51 774.78 822.20
U t

A=T,J=T 103.32 146.44 181.48 210.82 236.56 267.54 294.44 313.32 329.78 345.52 364.22 379.68 393.45 408.88 425.84

(d) The result of using the latent variable U t
AM to detect the presence of uncertainty drift for the

edge A → M .
Uncertainty of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

A=F,M=F 77.67 111.99 136.36 157.73 176.53 194.16 156.79 173.49 187.71 200.94 213.50 225.03 236.74 246.86 257.27
U t

A=F,M=T 120.16 178.65 215.57 247.11 280.35 305.22 330.48 360.53 380.07 394.85 412.89 428.49 445.26 459.79 473.95
U t

A=T,M=F 176.08 250.97 308.18 356.32 391.04 423.24 453.32 487.13 518.79 543.58 562.72 577.34 592.19 603.58 615.41
U t

A=T,M=T 120.16 170.49 209.04 244.26 272.56 305.22 190.01 212.59 232.98 253.50 272.82 291.47 310.56 327.51 345.56

All in all, we have shown that our framework that is based on using latent variables to

detect the presence of concept drift is effective and sensitive to changes in the underlying

distribution of data in nonstationary environments over time. Our framework was success-

fully able to detect the existence of both real concept drift and uncertainty drift. Our new

proposed approach for capturing uncertainty drift is sensitive and useful as it can ensure

the occurrence of real concept drift.

6.5.2 CHEST CLINIC NETWORK

The Chest Clinic network, a.k.a. the Visit to Asia network, was created by Lauritzen and

Spielgelhalter [35] and is widely used in Bayesian network experiments. This network

is a simple, fictitious medical network which could be employed in a medical facility to
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diagnose patients as shown in Figure 6.5. The Chest Clinic network consists of eight nodes,

which represent random variables, and eight edges, which indicate the causal relations

between the nodes.

The nodes are as follows:

(1) Node A indicates if the patient has been to Asia recently,

(2) Node S indicates whether the patient smokes,

(3) Node B indicates whether the patient has Bronchitis or not,

(4) Node L indicates whether the patient has been diagnosed with lung cancer,

(5) Node T indicates whether the patient has been diagnosed with Tuberculosis,

(6) Node E indicates whether the patient has been diagnosed with either lung cancer or

Tuberculosis,

(7) Node X indicates whether the X-ray results are positive, and

(8) Node D indicates whether the patient has been diagnosed with Dyspnea.

A complete description of this medical Bayesian network model is as follows [35]:

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer, or

bronchitis, or none of them, or more than one of them. A recent visit to Asia

increases the chances of tuberculosis, while smoking is known to be a risk

factor for both lung cancer and bronchitis. The results of a single chest X-ray

do not discriminate between lung cancer and tuberculosis, as neither does the

presence or absence of dyspnoea.

We apply our approach for detecting the presence of concept drift in discrete domains

to the Chest Clinic network. To avoid unnecessary computations, we use our framework to

detect the presence of concept drift of the weakest edge in the Chest Clinic network. Using
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Figure 6.5: The original Chest Clinic network.

Alsuwat et al.’s link strength measure, the edge from A → T is the weakest edge in this

network [2]. Therefore, we employ our framework to detect the existence of concept and

uncertainty drifts of the edge A → T .

To set up our experiment, we have implemented this network using HuginTM Research

8.4. HuginTM case generator [40, 49] is then used to generate 15 simulated datasets of

2, 000 cases each. These datasets are named Batch 1 through Batch 15. To simulate

the presence of concept drift, we change the posterior probabilities during the simulation

process as follows:

(1) the posterior probability P (T = no | A = no) is changed during the simulation

process of datasets Batch 4 and Batch 11.

(2) the posterior probability P (T = yes | A = no) is changed during the simulation

process of dataset Batch 4.

(3) the posterior probability P (T = no | A = yes) is changed during the simulation

process of dataset Batch 11.

(4) the posterior probability P (T = yes | A = yes) is changed during the simulation

process of datasets Batch 2 and Batch 10.

In this experiment, we assume that at each time point t (t = 1, . . . , 15), our framework

receives Batch t which has j observations (j is set at 2, 000 cases).
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Figure 6.6: Our proposed framework for modeling concept drift of the weakest edge in the
Chest Clinic network using a latent variable.

To implement our framework, we added a latent node for the weakest edge in the Chest

Clinic network. That is, we added the latent node U t
AT to detect the presence of real concept

drift and uncertainty drift for the edges A → T as shown in Figure 6.6. We assume that we

have no prior knowledge about concept drift, i.e., we assume that the hyperparameters of

the latent variable U t
AT , αat and βat, are equal to 1.

The results of applying our framework to detect the existence of real concept drift

and uncertainty drift of the weakest edge in the Chest Clinic network are summarized

in Table 6.4 and Table 6.5, respectively. Note that values shown in bold in Tables 6.4

and 6.5 indicate the presence of drift. Our framework was successfully able to detect

the presence of real concept drift and uncertainty drift. We observe that a change in the

posterior probability and the uncertainty is reflected by a variation in the evolution of the
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latent variable U t
AT . For example, we observe drifts in the posterior probabilities and the

uncertainties of the latent variable U t
AT as follows:

(1) when U = u | A = no, T = no, the posterior and the uncertainty drift at time points

4 and 11,

(2) when U = u | A = yes, T = no, the posterior and the uncertainty drift at time point

4,

(3) when U = u | A = no, T = yes, the posterior and the uncertainty drift at time point

11, and

(4) when U = u | A = yes, T = yes, the posterior and the uncertainty drift at time points

2 and 10.

Table 6.4: Results of using our framework to detect the presence of real concept drift of
the weakest edge in the Chest Clinic network.

Posterior of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

A=no,T =no 0.98 0.98 0.98 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.95 0.96 0.96 0.96 0.96
U t

A=yes,T =no 0.008 0.008 0.008 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
U t

A=no,T =yes 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.02 0.02 0.02 0.02 0.02
U t

A=yes,T =yes 0.0009 0.002 0.001 0.001 0.001 0.001 0.0009 0.0009 0.0009 0.001 0.001 0.001 0.001 0.001 0.001

Table 6.5: Results of using our framework to detect the presence of uncertainty drift of the
weakest edge in the Chest Clinic network.

Uncertainty of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U t

A=no,T =no 137.74 184.65 228.18 197.55 231.22 262.59 290.81 317.06 340.94 361.32 298.71 318.90 338.57 357.81 376.66
U t

A=yes,T =no 205.74 287.02 346.34 236.70 282.12 324.22 363.55 400.53 434.71 468.68 501.12 530.61 558.87 587.62 615.37
U t

A=no,T =yes 183.30 263.10 326.76 374.87 419.77 462.42 499.52 534.05 564.76 595.52 374.68 402.07 429.08 455.05 480.74
U t

A=yes,T =yes 736.31 527.74 751.41 955.80 1144.48 1373.21 1539.98 1696.67 1844.71 1591.53 1716.84 1838.06 1955.52 2069.48 2180.19

We observe that our framework is sensitive to changes in the underlying distribution of

incoming data. Moreover, our framework is able to quickly detect the existence of drifts.

Another important observation is that receiving more observations that belong to the cell

with the highest test statistics value will reflect a higher variation of the evolution of the

corresponding latent variable and thus will reflect a drift in the posterior and the uncertainty.
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Overall, we have shown that our framework that is based on using latent variables

to model concept drift in nonstationary environments is efficient to detect posterior and

uncertainty drifts of the weakest edge in a given Bayesian network model.
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CHAPTER 7

EXPLAINING CONCEPT DRIFT

7.1 INTRODUCTION

A common problem of using machine learning models in nonstationary environments is

that data evolves over time. This phenomenon is known as concept drift wherein the distri-

bution of the underlying data changes across time. Concept drift is a significant challenge

that greatly influences the accuracy and reliability of machine learning models. There-

fore, it is essential to build effective modeling techniques for detecting concept drift. Thus,

such effective concept drift detection techniques are able to not only detect the existence of

concept drift but also ensure the validity of learned models.

Detecting concept drift is crucial and active research in machine learning systems. The

vast majority of concept drift literature has been devoted to the investigation and study

of methods and techniques for detecting concept drift. However, fewer studies have re-

searched the causes of the occurring concept drift.

This chapter of the dissertation primarily focuses on finding an explanation of concept

drift in the context of discrete Bayesian networks. We use latent variables to help explain

the occurring posterior probability drift. To be able to find an explanations of the occur-

ring real concept drift, we need to extend our previously proposed modeling technique

for detecting concept drift using latent variables in discrete Bayesian networks (presented

in Chapter 6) to model concept drift across time. The extended version of our original

modeling technique is as presented in Figure 7.1.

The model presented in Figure 7.1 shows the relations between latent variables across
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Figure 7.1: Modeling concept drift across time using latent variables.

time. We assume that the posterior probability drift is being captured and stored using

our proposed modeling technique at specific time points. In what follows, we propose a

framework to help find explanations of the occurring posterior probability drift.

7.2 FRAMEWORK FOR EXPLAINING CONCEPT DRIFT

In this section, we present our framework for finding an explanation of the occurring con-

cept drift. It is important to point out that our original modeling technique (presented in

Chapter 6) is used to capture the existence of concept drift while the proposed framework

in this section is used to find an explanation of the detected concept drift across time. That

is, the new proposed probabilistic graphical model framework, which is based on using

latent variables, provides an explanation of the detected posterior probability drift across

time.

The main component of our proposed framework are as follows:
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• CDDM: Concept Drift Detection Method, and

• PPDE: Posterior Probability Drift Explanation.

Concept Drift Detection Method

In the CDDM, our framework uses a concept drift detection technique to examine the

incoming batches with the goal of detecting posterior probability drift.

In the CDDM, we use our proposed modeling technique that is based on using latent

variables to detect the existence of concept drift. Our modeling technique is as described in

Chapter 6. If our modeling technique detects a posterior probability drift, then we proceed

with the Posterior Probability Drift Explanation in order to check for explanations of the

occurring concept drift with the ultimate goal of distinguishing between natural concept

drifts and malicious attacks. Note that, the outcome of CDDM is a sequence of posterior

probability values denoted as Seq, where Seq = {v1, v2, . . . , vn} such that 0 ≤ vi ≤ 1.

Otherwise, there is no detected concept drift and thus our framework continues to receive

new incoming batches.

Posterior Probability Drift Explanation

In the PPDE, our framework uses a “Kullback-Leibler (KL) Divergence Based Measure”

defined below to detect whether the incoming sequence of posterior probability values has

an explanation similar to one stored in “Previously Stored Sequences” database.

We develop a measure for finding an explanation for the occurring posterior probability

drift. Our proposed measure is based on a commonly used distance measure, which is

Kullback-Leibler (KL) Divergence [17], as follows:

Kullback-Leibler (KL) Divergence Based Measure

This measure quantifies the distance between each instance in current sequence of poste-

rior probabilities Seq = {v1, v2, . . . , vn}, wherein a posterior probability drift has been de-

tected, and the corresponding instance in a previously stored sequence, Seq′
i = {vi′

1 , v
i′
2 , . . . ,

vi′
n}. Our KL divergence based measure is denoted by KL(vt∥vi′

t ) and defined as follows:
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Definition 7.1. Let Seq = (v1, . . . , vn) be a sequence of posterior probabilities wherein a

real concept drift has been detected and Seq′
i = (vi′

1 , . . . , v
i′
n) be a sequence of previously

stored drifts. Then the KullbackLeibler divergence between two instances vt and vi′
t is

defined as follows:

KL(vt∥vi′

t ) = |vt log vt

vi′
t

| (7.1)

Our Kullback-Leibler divergence based measure, KL(vt∥vi′
t ), for providing an expla-

nation of the detected real concept drift satisfies the following two properties:

• non-negativity: ∀ vt ∈ Seq, vi′
t ∈ Seq′

i, KL(vt∥vi′
t ) ≥ 0 (even though we take only

an instance of the probability distribution, the absolute value is enough to make our

measure non-negative), and

• non-degeneracy: ∀ vt ∈ Seq, vi′
t ∈ Seq′

i, KL(vt, v
i′
t ) = 0, only if vt = vi′

t .

In this section, we introduce Algorithm 6, which presents algorithmic details of how

the PPDE checks for explanations of the occurring posterior probability drift.

In PPDE, we use Algorithm 6 as a method to detect if there is a similar explanation of

the occurring real concept drift in the previously occurred and captured drifts. If the value

of ω is greater than λ (where λ is a small number 0 ≤ λ ≤ 1 that represents the required

similarities between the corresponding instances (values) in sequence Seq and sequence

Seq
′
i), then we conclude that sequence Seq′

i is not a proper explanation of the newly de-

tected drift in sequence Seq. Otherwise, if we have successfully checked all instances of

sequence Seq with the corresponding instances of sequence Seq′
i, then we conclude that

sequence Seq′
i is an explanation of the occurring real concept drift in sequence Seq.

We summarize the process of applying our framework in Figure 7.2. We describe the

workflow of our framework as follows:

• Our framework receives a set of incoming batches, namely Batch 1, . . . , Batch n

from an untrusted source. Such batches need to checked since they may have real

concept drift or contaminated batches.
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Algorithm 6: KL Divergence Based Measure for finding an Explanations of Pos-
terior Probability Drift

Input :
• A sequence of posterior probability values, Seq = {v1, v2, . . . , vn}, wherein a

posterior probability drift has been detected,

• A database of previously stored sequences DB1, where DB1 = {Seq′
1, . . . ,

Seq
′
k} such that Seq′

i = {vi′
1 , v

i′
2 , . . . , v

i′
n}, and

• λ where 0 ≤ λ ≤ 1 is the rate at which the value vt in sequence Seq and vi′
t in

sequence Seq′
i are required to be similar.

Output: Seq′
i, where 1 ≤ i ≤ k, if there exists an explanation of the occurring real

concept drift; otherwise, a message is printed as there is no explanation.

1 Procedure KL Based Measure(Seq, DB1)
2 for (i = 1; i ≤ k; i++) do
3 for (t = 1; t ≤ n; t++) do
4 ω = 0.0 ◃ a variable that has the differences between the posterior

probabilities vt and vi′
t ;

5 ω = |vt log vt

vi′
t

|;
6 if ω > λ then
7 Break;
8 end
9 if t == n then

10 Return Seq′
i;

11 end
12 end
13 end
14 Return Msg “There exists no explanation for the occurring real concept drift”;
15 end
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Figure 7.2: Framework for explaining the occurring posterior probability drift.

• the CDDM part of our framework checks for the existence of real concept drift. If a

posterior probability drift has been detected, then our framework proceeds with the

PPDE part. Otherwise, our framework continue to receive a new set of batches.

• the PPDE part of our framework checks for an explanation of the occurring poste-

rior probability drift. If such an explanations exists, then our framework shows the

explanation. Otherwise, a message is printed as there is no similar case has occurred

before.

7.3 EMPIRICAL RESULTS

We have implemented our approaches for finding explanations for posterior probability

drift and applied them to the Burglary-Earthquake Network. The main goal of this section

is to validate the effectiveness of our proposed framework for finding an explanation of a

detected real concept drift. That is, we validate the effectiveness of the CDDM to detect

an existing real concept drift and then validate the effectiveness of the PPDE, namely Al-
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gorithm 6, to find whether there exists an explanation of the detected real concept drift or

not.

To set up our experiment, we have implemented the Burglary-Earthquake Network

using HuginTM Research 8.4. To avoid unnecessary computations, we use our framework

to find explanations of the detected concept drift of the edge B → A in the Burglary-

Earthquake Network.

In our implementation, we have i (i = 1, . . . , k) independent experiments. We call the

outcome of each experiment a sequence of posterior probabilities that have real concept

drift. We assume that each time point t (t = 1, . . . , n) in each of the k experiments,

we receive Batchi′
t which has j observations (we set j = 1, 000 cases). At the end of

each experiment, we store the resulting sequence, Seq′
i, in a database of previously stored

explanations DB1.

HuginTM case generator [40, 49] is then used to generate the databaseDB1. We assume

that k = 6 and n = 5. This means that we have 6 sequences, Seq′
1, . . . , Seq

′
6, stored in

DB1. Each sequence Seq′
i for 1 ≤ i ≤ 6 requires simulating 5 datasets of 1, 000 cases

each. These datasets are named Batchi′
1 through Batchi′

5 . During the simulation process,

the posterior probabilities of the edge B → A are changed to simulate the existence of real

concept drift. That is, the posterior probability P (A = F | B = F ) is changed during

the simulation process of the following datasets: (1) Batch1′
3 , (2) Batch2′

4 , (3) Batch3′
5 ,

(4) Batch4′
2 , (5) Batch4′

5 , (6) Batch5′
2 , and (7) Batch6′

2 .

We present the results of generating the database of previously stored explanations,

DB1, in Table 7.1. We observe that our modeling approach, CDDM, presented in Chap-

ter 6, succeeded in detecting the existence of all the simulated posterior probability drifts.

We next use HuginTM case generator to generate 5 datasets of 1, 000 cases each. We

name these datasets Batch 1 through Batch 5. During the simulation process of these

datasets, we changed the posterior probabilities of the edge B → A at time point t = 2 in

order to simulate the presence of real concept drift.
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Table 7.1: A database of stored explanations denoted as DB1. DB1 has sequences of
posterior probabilities, named Seq′

1 through Seq′
6, and each sequence has at least one real

concept drift. Note that the real concept drifts are shown in bold font.

Sequence Number Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
Seq′

1 0.98 0.98 0.94 0.95 0.96
Seq′

2 0.96 0.96 0.96 0.92 0.93
Seq′

3 0.97 0.97 0.97 0.97 0.93
Seq′

4 0.85 0.89 0.88 0.79 0.81
Seq′

5 0.97 0.93 0.95 0.95 0.96
Seq′

6 0.85 0.90 0.88 0.87 0.87

We present the results of using the CDDM modeling part of our framework to detect

the presence of real concept drift in the sequence Seq = {v1, v2, . . . , vn} as shown in

Table 7.2. We observe that our framework succeeded in detecting the presence of the

simulated posterior probability drift at time point t = 2.

Table 7.2: The sequence Seq of posterior probabilities, which has one real concept drift at
time point t = 2 shown in bold font.

Sequence Number Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
Seq 0.86 0.91 0.89 0.88 0.87

Our framework then sends Seq as an input to the PPDE part of our framework, namely

Algorithm 6, in order to check whether there exists an explanation for the detected real

concept drift in sequence Seq. We assume that λ = 0.025. This means that the KL

divergences value between the corresponding values in the sequence Seq and each of stored

sequences Seq′
i should be no larger than 0.025.

We present the result of using Algorithm 6 to check for explanations of the detected

posterior probability drift in sequence Seq in Table 7.3. We observe that Algorithm 6 suc-

ceeded in finding an explanations for the occurring drift, Seq at time t = 2, by comparing

sequence Seq with the stored sequences in DB1. It is important to point out that cells

filled with an x indicate that Algorithm 6 was not required to calculate those cells as there

was a KL divergences value larger than 0.025, which causes Algorithm 6 to terminate and

continues to find another explanation.
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Table 7.3: The result of using Algorithm 6 to check for explanations of the detected real
concept drift in sequence Seq.

Compare between Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
Seq′

1 and Seq 0.19 x x x x
Seq′

2 and Seq 0.16 x x x x
Seq′

3 and Seq 0.17 x x x x
Seq′

4 and Seq 0.01 0.02 0.02 0.11 x
Seq′

5 and Seq 0.17 x x x x
Seq′

6 and Seq 0.01 0.01 0.01 0.01 0.00

We observe that our proposed framework for explaining real concept drift is capable

to reliably provide an explanation of the occurring drift. We observe that using latent

variables to build frameworks is an efficient mechanism to both detect and explain concept

drifts. We have shown that our frameworks based on using latent variables are not only

efficient to model and detect the presence of concept drift but also able efficient to provide

an explanation of the occurring real concept.

79



www.manaraa.com

CHAPTER 8

CONCLUSION AND FUTURE WORK

In recent years, data integrity has become a major security challenge. In this dissertation,

we have first studied the problem that cryptographic shuffling algorithms do not preserve

data dependencies in relational databases. For this, we have developed methods for pre-

serving functional dependencies and data-driven dependencies while using secure crypto-

graphic shuffling algorithms. We have presented formal proofs of our proposed methods.

For addressing the issue of violating data dependencies while using shuffling algo-

rithms, our results indicate that our new proposed techniques are able to preserve func-

tional dependencies and data-driven dependencies when used with cryptographic shuffling

algorithms. This, in turn, makes it more difficult for an adversary to detect that the database

was shuffled.

We have then studied the issue of concept drift in the context of discrete Bayesian

networks in nonstationary environments. We have proposed a framework for modeling

concept drift using latent variables in discrete Bayesian networks. Our modeling technique

using latent variables is sensitive to changes in the underlying distribution of data. We have

also proposed a probabilistic graphical model framework for finding an explanation of the

detected real concept drift. Our modeling framework is able to provide an explanation of

the occurring posterior probability drift across time.

For addressing the issue of concept drift in the context of discrete Bayesian networks,

we have implemented our proposed frameworks and applied them to the Burglary-Earthquake

Network and the Chest Clinic Network, which are widely used networks in Bayesian ex-

periments. Our results indicate that our frameworks are not only sensitive to changes in the
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underlying distribution of incoming data but also can easily detect and provide an explana-

tion of the occurring concept drift across time.

In our future work, we aim to extend our current work as follows:

We aim to extend our solutions for preserving data dependencies while using secure

cryptographic shuffling algorithms to the cases where the BCNF decomposition does not

preserve the functional dependencies. For this, we will investigate the possibility of using

application specific enforcement to build code templates that enforce functional dependen-

cies.

We will investigate the possibility of using an information entropy measure to increase

the security of our proposed approaches for preserving data dependencies while using se-

cure cryptographic shuffling algorithms. That is, the information entropy measure should

be able to assure that the proposed approaches do not give more information to malicious

users.

We aim to extend our proposed framework for modeling the presence of concept drift

such that it is capable of distinguishing between malicious data modification/insertion and

natural model drift.

We will investigate the possibility of using the expectation-maximization (EM) algo-

rithm to estimate the values of the latent nodes. We aim to compare the sensitivity and the

accuracy of this proposed method for modeling concept drift with our original modeling

technique that was proposed in Chapter 6.
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